Suppr超能文献

肿瘤学中的决策支持系统

Decision Support Systems in Oncology.

作者信息

Walsh Seán, de Jong Evelyn E C, van Timmeren Janna E, Ibrahim Abdalla, Compter Inge, Peerlings Jurgen, Sanduleanu Sebastian, Refaee Turkey, Keek Simon, Larue Ruben T H M, van Wijk Yvonka, Even Aniek J G, Jochems Arthur, Barakat Mohamed S, Leijenaar Ralph T H, Lambin Philippe

机构信息

Maastricht University, Maastricht, the Netherlands.

出版信息

JCO Clin Cancer Inform. 2019 Feb;3:1-9. doi: 10.1200/CCI.18.00001.

Abstract

Precision medicine is the future of health care: please watch the animation at https://vimeo.com/241154708 . As a technology-intensive and -dependent medical discipline, oncology will be at the vanguard of this impending change. However, to bring about precision medicine, a fundamental conundrum must be solved: Human cognitive capacity, typically constrained to five variables for decision making in the context of the increasing number of available biomarkers and therapeutic options, is a limiting factor to the realization of precision medicine. Given this level of complexity and the restriction of human decision making, current methods are untenable. A solution to this challenge is multifactorial decision support systems (DSSs), continuously learning artificial intelligence platforms that integrate all available data-clinical, imaging, biologic, genetic, cost-to produce validated predictive models. DSSs compare the personalized probable outcomes-toxicity, tumor control, quality of life, cost effectiveness-of various care pathway decisions to ensure optimal efficacy and economy. DSSs can be integrated into the workflows both strategically (at the multidisciplinary tumor board level to support treatment choice, eg, surgery or radiotherapy) and tactically (at the specialist level to support treatment technique, eg, prostate spacer or not). In some countries, the reimbursement of certain treatments, such as proton therapy, is already conditional on the basis that a DSS is used. DSSs have many stakeholders-clinicians, medical directors, medical insurers, patient advocacy groups-and are a natural consequence of big data in health care. Here, we provide an overview of DSSs, their challenges, opportunities, and capacity to improve clinical decision making, with an emphasis on the utility in oncology.

摘要

精准医疗是医疗保健的未来

请观看位于https://vimeo.com/241154708的动画。作为一门技术密集型且依赖技术的医学学科,肿瘤学将处于这一即将到来的变革的前沿。然而,要实现精准医疗,必须解决一个基本难题:在可用生物标志物和治疗选择数量不断增加的情况下,人类认知能力通常限于五个决策变量,这是实现精准医疗的一个限制因素。鉴于这种复杂性以及人类决策的局限性,当前的方法是行不通的。应对这一挑战的解决方案是多因素决策支持系统(DSS),即不断学习的人工智能平台,它整合所有可用数据——临床、影像、生物、基因、成本——以生成经过验证的预测模型。DSS比较各种护理途径决策的个性化可能结果——毒性、肿瘤控制、生活质量、成本效益——以确保最佳疗效和经济性。DSS可以在战略层面(在多学科肿瘤委员会层面以支持治疗选择,例如手术或放疗)和战术层面(在专科层面以支持治疗技术,例如是否使用前列腺间隔器)整合到工作流程中。在一些国家,某些治疗(如质子治疗)的报销已经以使用DSS为条件。DSS有许多利益相关者——临床医生、医疗主任、医疗保险公司、患者倡导团体——并且是医疗保健领域大数据的自然产物。在此,我们概述了DSS、它们面临的挑战、机遇以及改善临床决策的能力,重点是在肿瘤学中的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验