Suppr超能文献

通过个性化的大规模计算模型理解阅读障碍

Understanding Dyslexia Through Personalized Large-Scale Computational Models.

机构信息

1 Faculty of Health, Arts and Design, Swinburne University of Technology.

2 Department of General Psychology, University of Padova.

出版信息

Psychol Sci. 2019 Mar;30(3):386-395. doi: 10.1177/0956797618823540. Epub 2019 Feb 7.

Abstract

Learning to read is foundational for literacy development, yet many children in primary school fail to become efficient readers despite normal intelligence and schooling. This condition, referred to as developmental dyslexia, has been hypothesized to occur because of deficits in vision, attention, auditory and temporal processes, and phonology and language. Here, we used a developmentally plausible computational model of reading acquisition to investigate how the core deficits of dyslexia determined individual learning outcomes for 622 children (388 with dyslexia). We found that individual learning trajectories could be simulated on the basis of three component skills related to orthography, phonology, and vocabulary. In contrast, single-deficit models captured the means but not the distribution of reading scores, and a model with noise added to all representations could not even capture the means. These results show that heterogeneity and individual differences in dyslexia profiles can be simulated only with a personalized computational model that allows for multiple deficits.

摘要

学习阅读是文化素养发展的基础,但许多小学生尽管智力和学校教育正常,却无法成为高效的阅读者。这种情况被称为发展性阅读障碍,据推测是由于视觉、注意力、听觉和时间处理以及语音和语言方面的缺陷造成的。在这里,我们使用了一种发展上合理的阅读习得计算模型,来研究阅读障碍的核心缺陷如何决定 622 名儿童(388 名阅读障碍儿童)的个体学习成果。我们发现,基于与正字法、语音和词汇相关的三种组成技能,可以模拟个体学习轨迹。相比之下,单一缺陷模型可以捕捉到阅读分数的平均值,但不能捕捉到分布,而在所有表示中添加噪声的模型甚至无法捕捉到平均值。这些结果表明,只有使用允许存在多种缺陷的个性化计算模型,才能模拟阅读障碍特征的异质性和个体差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df49/6419236/2c90f8a8c62d/10.1177_0956797618823540-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验