Suppr超能文献

在应用生态学中应用模型选择的统计模型中,无信息参数的普遍性。

On the prevalence of uninformative parameters in statistical models applying model selection in applied ecology.

机构信息

Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.

出版信息

PLoS One. 2019 Feb 7;14(2):e0206711. doi: 10.1371/journal.pone.0206711. eCollection 2019.

Abstract

Research in applied ecology provides scientific evidence to guide conservation policy and management. Applied ecology is becoming increasingly quantitative and model selection via information criteria has become a common statistical modeling approach. Unfortunately, parameters that contain little to no useful information are commonly presented and interpreted as important in applied ecology. I review the concept of an uninformative parameter in model selection using information criteria and perform a literature review to measure the prevalence of uninformative parameters in model selection studies applying Akaike's Information Criterion (AIC) in 2014 in four of the top journals in applied ecology (Biological Conservation, Conservation Biology, Ecological Applications, Journal of Applied Ecology). Twenty-one percent of studies I reviewed applied AIC metrics. Many (31.5%) of the studies applying AIC metrics in the four applied ecology journals I reviewed had or were very likely to have uninformative parameters in a model set. In addition, more than 40% of studies reviewed had insufficient information to assess the presence or absence of uninformative parameters in a model set. Given the prevalence of studies likely to have uninformative parameters or with insufficient information to assess parameter status (71.5%), I surmise that much of the policy recommendations based on applied ecology research may not be supported by the data analysis. I provide four warning signals and a decision tree to assist authors, reviewers, and editors to screen for uninformative parameters in studies applying model selection with information criteria. In the end, careful thinking at every step of the scientific process and greater reporting standards are required to detect uninformative parameters in studies adopting an information criteria approach.

摘要

应用生态学的研究为指导保护政策和管理提供了科学依据。应用生态学正变得越来越定量化,通过信息准则进行模型选择已成为一种常见的统计建模方法。不幸的是,在应用生态学中,通常会呈现并解释那些包含很少或没有有用信息的参数为重要参数。我使用信息准则审查了模型选择中无信息参数的概念,并进行了文献综述,以衡量在应用生态学中使用赤池信息量准则(AIC)进行模型选择研究中无信息参数的普遍性。在四个应用生态学顶级期刊(《生物保护》《保护生物学》《生态应用》《应用生态学杂志》)中,2014 年有 21%的研究应用了 AIC 指标。我回顾的研究中,许多(31.5%)应用 AIC 指标的研究在这四个应用生态学期刊中,模型集中的参数可能或很可能是无信息的。此外,审查的研究中有超过 40%的研究没有足够的信息来评估模型集中参数的存在或不存在。鉴于可能存在无信息参数或缺乏评估模型集中参数状态的信息的研究的普遍性(71.5%),我推测,基于应用生态学研究的许多政策建议可能没有得到数据分析的支持。我提供了四个警告信号和一个决策树,以帮助作者、审稿人和编辑筛选应用信息准则进行模型选择的研究中的无信息参数。最终,需要在科学过程的每一步都进行仔细的思考,并制定更高的报告标准,以检测采用信息准则方法的研究中的无信息参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acdb/6366740/04c1b4222163/pone.0206711.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验