Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, Maryland.
Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts.
Ophthalmology. 2019 Jun;126(6):822-828. doi: 10.1016/j.ophtha.2019.01.029. Epub 2019 Feb 4.
To determine the agreement of 6 established visual field (VF) progression algorithms in a large dataset of VFs from multiple institutions and to determine predictors of discordance among these algorithms.
Retrospective longitudinal cohort study.
Visual fields from 5 major eye care institutions in the United States were analyzed, including a subset of eyes with at least 5 Swedish interactive threshold algorithm standard 24-2 VFs that met our reliability criteria. Of a total of 831 240 VFs, a subset of 90 713 VFs from 13 156 eyes of 8499 patients met the inclusion criteria.
Six commonly used VF progression algorithms (mean deviation [MD] slope, VF index slope, Advanced Glaucoma Intervention Study, Collaborative Initial Glaucoma Treatment Study, pointwise linear regression, and permutation of pointwise linear regression) were applied to this cohort, and each eye was determined to be stable or progressing using each measure. Agreement between individual algorithms was tested using Cohen's κ coefficient. Bivariate and multivariate analyses were used to determine predictors of discordance (3 algorithms progressing and 3 algorithms stable).
Agreement and discordance between algorithms.
Individual algorithms showed poor to moderate agreement with each other when compared directly (κ range, 0.12-0.52). Based on at least 4 algorithms, 11.7% of eyes progressed. Major predictors of discordance or lack of agreement among algorithms were more depressed initial MD (P < 0.01) and older age at first available VF (P < 0.01). A greater number of VFs (P < 0.01), more years of follow-up (P < 0.01), and eye care institution (P = 0.03) also were associated with discordance.
This extremely large comparative series demonstrated that existing algorithms have limited agreement and that agreement varies with clinical parameters, including institution. These issues underscore the challenges to the clinical use and application of progression algorithms and of applying big-data results to individual practices.
在来自多个机构的大量视野 (VF) 数据集中,确定 6 种已建立的视觉领域进展算法的一致性,并确定这些算法之间不一致的预测因素。
回顾性纵向队列研究。
分析了来自美国 5 家主要眼科医疗机构的视野,包括满足我们可靠性标准的至少 5 个具有至少 5 个瑞典交互阈值算法标准 24-2 VF 的眼睛子集。在总共 831,240 个 VF 中,来自 8499 名患者的 13,156 只眼睛的 90,713 个 VF 子集符合纳入标准。
将六种常用的 VF 进展算法(平均偏差 [MD] 斜率、VF 指数斜率、高级青光眼干预研究、合作性初始青光眼治疗研究、逐点线性回归和逐点线性回归的置换)应用于该队列,并且使用每个指标来确定每个眼睛是稳定还是进展。使用 Cohen's κ 系数测试个体算法之间的一致性。使用二元和多元分析来确定不一致的预测因素(3 种算法进展和 3 种算法稳定)。
算法之间的一致性和不一致性。
当直接比较时,个别算法之间的一致性较差或中等(κ 范围为 0.12-0.52)。基于至少 4 种算法,11.7%的眼睛进展。算法之间不一致或缺乏一致性的主要预测因素是初始 MD 下降更大(P < 0.01)和首次获得 VF 时年龄更大(P < 0.01)。更多的 VF(P < 0.01)、更长的随访时间(P < 0.01)和眼科医疗机构(P=0.03)也与不一致有关。
这项极其庞大的比较系列表明,现有的算法一致性有限,并且一致性因临床参数(包括机构)而异。这些问题突显了临床应用进展算法以及将大数据结果应用于个体实践所面临的挑战。