Suppr超能文献

6 种视野进展算法的一致性和预测因素。

Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms.

机构信息

Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, Maryland.

Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts.

出版信息

Ophthalmology. 2019 Jun;126(6):822-828. doi: 10.1016/j.ophtha.2019.01.029. Epub 2019 Feb 4.

Abstract

PURPOSE

To determine the agreement of 6 established visual field (VF) progression algorithms in a large dataset of VFs from multiple institutions and to determine predictors of discordance among these algorithms.

DESIGN

Retrospective longitudinal cohort study.

PARTICIPANTS

Visual fields from 5 major eye care institutions in the United States were analyzed, including a subset of eyes with at least 5 Swedish interactive threshold algorithm standard 24-2 VFs that met our reliability criteria. Of a total of 831 240 VFs, a subset of 90 713 VFs from 13 156 eyes of 8499 patients met the inclusion criteria.

METHODS

Six commonly used VF progression algorithms (mean deviation [MD] slope, VF index slope, Advanced Glaucoma Intervention Study, Collaborative Initial Glaucoma Treatment Study, pointwise linear regression, and permutation of pointwise linear regression) were applied to this cohort, and each eye was determined to be stable or progressing using each measure. Agreement between individual algorithms was tested using Cohen's κ coefficient. Bivariate and multivariate analyses were used to determine predictors of discordance (3 algorithms progressing and 3 algorithms stable).

MAIN OUTCOME MEASURES

Agreement and discordance between algorithms.

RESULTS

Individual algorithms showed poor to moderate agreement with each other when compared directly (κ range, 0.12-0.52). Based on at least 4 algorithms, 11.7% of eyes progressed. Major predictors of discordance or lack of agreement among algorithms were more depressed initial MD (P < 0.01) and older age at first available VF (P < 0.01). A greater number of VFs (P < 0.01), more years of follow-up (P < 0.01), and eye care institution (P = 0.03) also were associated with discordance.

CONCLUSIONS

This extremely large comparative series demonstrated that existing algorithms have limited agreement and that agreement varies with clinical parameters, including institution. These issues underscore the challenges to the clinical use and application of progression algorithms and of applying big-data results to individual practices.

摘要

目的

在来自多个机构的大量视野 (VF) 数据集中,确定 6 种已建立的视觉领域进展算法的一致性,并确定这些算法之间不一致的预测因素。

设计

回顾性纵向队列研究。

参与者

分析了来自美国 5 家主要眼科医疗机构的视野,包括满足我们可靠性标准的至少 5 个具有至少 5 个瑞典交互阈值算法标准 24-2 VF 的眼睛子集。在总共 831,240 个 VF 中,来自 8499 名患者的 13,156 只眼睛的 90,713 个 VF 子集符合纳入标准。

方法

将六种常用的 VF 进展算法(平均偏差 [MD] 斜率、VF 指数斜率、高级青光眼干预研究、合作性初始青光眼治疗研究、逐点线性回归和逐点线性回归的置换)应用于该队列,并且使用每个指标来确定每个眼睛是稳定还是进展。使用 Cohen's κ 系数测试个体算法之间的一致性。使用二元和多元分析来确定不一致的预测因素(3 种算法进展和 3 种算法稳定)。

主要观察指标

算法之间的一致性和不一致性。

结果

当直接比较时,个别算法之间的一致性较差或中等(κ 范围为 0.12-0.52)。基于至少 4 种算法,11.7%的眼睛进展。算法之间不一致或缺乏一致性的主要预测因素是初始 MD 下降更大(P < 0.01)和首次获得 VF 时年龄更大(P < 0.01)。更多的 VF(P < 0.01)、更长的随访时间(P < 0.01)和眼科医疗机构(P=0.03)也与不一致有关。

结论

这项极其庞大的比较系列表明,现有的算法一致性有限,并且一致性因临床参数(包括机构)而异。这些问题突显了临床应用进展算法以及将大数据结果应用于个体实践所面临的挑战。

相似文献

1
Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms.6 种视野进展算法的一致性和预测因素。
Ophthalmology. 2019 Jun;126(6):822-828. doi: 10.1016/j.ophtha.2019.01.029. Epub 2019 Feb 4.

引用本文的文献

2
[Visual field prediction based on temporal-spatial feature learning].基于时空特征学习的视野预测
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):1003-1011. doi: 10.7507/1001-5515.202310072.
3
Big data in visual field testing for glaucoma.青光眼视野检测中的大数据
Taiwan J Ophthalmol. 2024 Sep 13;14(3):289-298. doi: 10.4103/tjo.TJO-D-24-00059. eCollection 2024 Jul-Sep.

本文引用的文献

2
Big Data and Machine Learning in Health Care.医疗保健中的大数据与机器学习
JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391.
3
Detecting Visual Field Progression.检测视野进展。
Ophthalmology. 2017 Dec;124(12S):S51-S56. doi: 10.1016/j.ophtha.2017.05.010.
4
Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma.青光眼视野测试结果逆转与视野特征
Ophthalmology. 2018 Mar;125(3):352-360. doi: 10.1016/j.ophtha.2017.09.021. Epub 2017 Nov 2.
5
Will Perimetry Be Performed to Monitor Glaucoma in 2025?2025 年是否将进行视野检查以监测青光眼?
Ophthalmology. 2017 Dec;124(12S):S71-S75. doi: 10.1016/j.ophtha.2017.04.009. Epub 2017 Aug 31.
7
Risk Factors for Rapid Glaucoma Disease Progression.青光眼疾病快速进展的危险因素。
Am J Ophthalmol. 2017 Aug;180:151-157. doi: 10.1016/j.ajo.2017.06.003. Epub 2017 Jun 15.
8
The Draw(backs) of Big Data.大数据的弊端
JAMA Ophthalmol. 2017 May 1;135(5):422-423. doi: 10.1001/jamaophthalmol.2017.0703.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验