文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定制(催化)活性包涵体的性质。

Tailoring the properties of (catalytically)-active inclusion bodies.

机构信息

Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.

Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany.

出版信息

Microb Cell Fact. 2019 Feb 7;18(1):33. doi: 10.1186/s12934-019-1081-5.


DOI:10.1186/s12934-019-1081-5
PMID:30732596
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6367779/
Abstract

BACKGROUND: Immobilization is an appropriate tool to ease the handling and recycling of enzymes in biocatalytic processes and to increase their stability. Most of the established immobilization methods require case-to-case optimization, which is laborious and time-consuming. Often, (chromatographic) enzyme purification is required and stable immobilization usually includes additional cross-linking or adsorption steps. We have previously shown in a few case studies that the molecular biological fusion of an aggregation-inducing tag to a target protein induces the intracellular formation of protein aggregates, so called inclusion bodies (IBs), which to a certain degree retain their (catalytic) function. This enables the combination of protein production and immobilization in one step. Hence, those biologically-produced immobilizates were named catalytically-active inclusion bodies (CatIBs) or, in case of proteins without catalytic activity, functional IBs (FIBs). While this strategy has been proven successful, the efficiency, the potential for optimization and important CatIB/FIB properties like yield, activity and morphology have not been investigated systematically. RESULTS: We here evaluated a CatIB/FIB toolbox of different enzymes and proteins. Different optimization strategies, like linker deletion, C- versus N-terminal fusion and the fusion of alternative aggregation-inducing tags were evaluated. The obtained CatIBs/FIBs varied with respect to formation efficiency, yield, composition and residual activity, which could be correlated to differences in their morphology; as revealed by (electron) microscopy. Last but not least, we demonstrate that the CatIB/FIB formation efficiency appears to be correlated to the solvent-accessible hydrophobic surface area of the target protein, providing a structure-based rationale for our strategy and opening up the possibility to predict its efficiency for any given target protein. CONCLUSION: We here provide evidence for the general applicability, predictability and flexibility of the CatIB/FIB immobilization strategy, highlighting the application potential of CatIB-based enzyme immobilizates for synthetic chemistry, biocatalysis and industry.

摘要

背景:固定化是一种在生物催化过程中缓解酶的处理和回收并提高其稳定性的合适工具。大多数已建立的固定化方法需要针对具体情况进行优化,这既费力又费时。通常需要(色谱)酶纯化,并且稳定的固定化通常包括额外的交联或吸附步骤。我们之前在一些案例研究中表明,将聚集诱导标签与目标蛋白进行分子生物学融合会导致细胞内形成蛋白质聚集体,即所谓的包涵体(IB),在一定程度上保留其(催化)功能。这使得蛋白质生产和固定化可以一步完成。因此,这些生物产生的固定化剂被命名为催化活性包涵体(CatIB),或者在没有催化活性的蛋白质的情况下,功能 IB(FIB)。虽然该策略已被证明是成功的,但效率、优化潜力以及重要的 CatIB/FIB 性质,如产率、活性和形态,尚未得到系统研究。

结果:我们在这里评估了不同酶和蛋白质的 CatIB/FIB 工具箱。评估了不同的优化策略,例如接头缺失、C 端与 N 端融合以及替代聚集诱导标签的融合。获得的 CatIB/FIB 在形成效率、产率、组成和残余活性方面存在差异,这可以与它们形态上的差异相关联;如电子显微镜所示。最后但同样重要的是,我们证明 CatIB/FIB 的形成效率似乎与目标蛋白的溶剂可及疏水面积相关,为我们的策略提供了基于结构的原理,并为预测任何给定目标蛋白的效率提供了可能性。

结论:我们在这里提供了 CatIB/FIB 固定化策略的一般适用性、可预测性和灵活性的证据,突出了 CatIB 基酶固定化剂在合成化学、生物催化和工业中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/fc87ca60e57e/12934_2019_1081_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/7a3daae72c89/12934_2019_1081_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/5109747d4593/12934_2019_1081_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/40368b3815f3/12934_2019_1081_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/e4148fcdd31d/12934_2019_1081_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/22a9743c036e/12934_2019_1081_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/fc87ca60e57e/12934_2019_1081_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/7a3daae72c89/12934_2019_1081_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/5109747d4593/12934_2019_1081_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/40368b3815f3/12934_2019_1081_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/e4148fcdd31d/12934_2019_1081_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/22a9743c036e/12934_2019_1081_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/6367779/fc87ca60e57e/12934_2019_1081_Fig6_HTML.jpg

相似文献

[1]
Tailoring the properties of (catalytically)-active inclusion bodies.

Microb Cell Fact. 2019-2-7

[2]
Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry.

ACS Synth Biol. 2022-5-20

[3]
Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine.

J Biotechnol. 2017-4-30

[4]
Design, Production, and Characterization of Catalytically Active Inclusion Bodies.

Methods Mol Biol. 2023

[5]
Catalytically-active inclusion bodies for biotechnology-general concepts, optimization, and application.

Appl Microbiol Biotechnol. 2020-9

[6]
Construction and comprehensive characterization of an EcLDCc-CatIB set-varying linkers and aggregation inducing tags.

Microb Cell Fact. 2021-2-17

[7]
Construction and characterization of BsGDH-CatIB variants and application as robust and highly active redox cofactor regeneration module for biocatalysis.

Microb Cell Fact. 2022-6-2

[8]
"High-throughput screening of catalytically active inclusion bodies using laboratory automation and Bayesian optimization".

Microb Cell Fact. 2024-2-24

[9]
A Synthetic Reaction Cascade Implemented by Colocalization of Two Proteins within Catalytically Active Inclusion Bodies.

ACS Synth Biol. 2018-9-21

[10]
Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.

Microb Cell Fact. 2015-6-16

引用本文的文献

[1]
Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization.

Eng Life Sci. 2025-3-13

[2]
Magnetic protein aggregates generated by supramolecular assembly of ferritin cages - a modular strategy for the immobilization of enzymes.

Front Bioeng Biotechnol. 2024-10-23

[3]
Expression Patterns and Functional Analysis of Three Genes Encoding Tyrosine Aminotransferases in .

Int J Mol Sci. 2023-10-25

[4]
Recombinant protein condensation inside enables the development of building blocks for bioinspired materials engineering - Biomimetic spider silk protein as a case study.

Mater Today Bio. 2022-11-14

[5]
Construction and characterization of BsGDH-CatIB variants and application as robust and highly active redox cofactor regeneration module for biocatalysis.

Microb Cell Fact. 2022-6-2

[6]
Coiled-Coil Based Inclusion Bodies and Their Potential Applications.

Front Bioeng Biotechnol. 2021-8-17

[7]
Thermostable adenosine 5'-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies.

Sci Rep. 2021-8-19

[8]
Construction and comprehensive characterization of an EcLDCc-CatIB set-varying linkers and aggregation inducing tags.

Microb Cell Fact. 2021-2-17

[9]
Title: insoluble proteins catch heterologous soluble proteins into inclusion bodies by intermolecular interaction of aggregating peptides.

Microb Cell Fact. 2021-2-2

[10]
Proteasome Biology: Chemistry and Bioengineering Insights.

Polymers (Basel). 2020-12-4

本文引用的文献

[1]
A Synthetic Reaction Cascade Implemented by Colocalization of Two Proteins within Catalytically Active Inclusion Bodies.

ACS Synth Biol. 2018-9-21

[2]
Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production.

Sci Rep. 2018-4-11

[3]
Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine.

J Biotechnol. 2017-4-30

[4]
Encapsulation of Spherical Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Mesoporous Biosilica.

J Agric Food Chem. 2017-1-25

[5]
Cadaverine Production by Using Cross-Linked Enzyme Aggregate of Lysine Decarboxylase.

J Microbiol Biotechnol. 2017-2-28

[6]
Enzyme Engineering for In Situ Immobilization.

Molecules. 2016-10-14

[7]
Functional inclusion bodies produced in the yeast Pichia pastoris.

Microb Cell Fact. 2016-10-1

[8]
Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology.

Acta Biomater. 2016-10-1

[9]
Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA.

Sci Rep. 2016-4-15

[10]
Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

Microb Cell Fact. 2016-2-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索