Suppr超能文献

miPIE:基于整合证据的 miRNA 测序预测。

miPIE: NGS-based Prediction of miRNA Using Integrated Evidence.

机构信息

Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada.

出版信息

Sci Rep. 2019 Feb 7;9(1):1548. doi: 10.1038/s41598-018-38107-z.

Abstract

Methods for the de novo identification of microRNA (miRNA) have been developed using a range of sequence-based features. With the increasing availability of next generation sequencing (NGS) transcriptome data, there is a need for miRNA identification that integrates both NGS transcript expression-based patterns as well as advanced genomic sequence-based methods. While miRDeep2 does examine the predicted secondary structure of putative miRNA sequences, it does not leverage many of the sequence-based features used in state-of-the-art de novo methods. Meanwhile, other NGS-based methods, such as miRanalyzer, place an emphasis on sequence-based features without leveraging advanced expression-based features reflecting miRNA biosynthesis. This represents an opportunity to combine the strengths of NGS-based analysis with recent advances in de novo sequence-based miRNA prediction. We here develop a method, microRNA Prediction using Integrated Evidence (miPIE), which integrates both expression-based and sequence-based features to achieve significantly improved miRNA prediction performance. Feature selection identifies the 20 most discriminative features, 3 of which reflect strictly expression-based information. Evaluation using precision-recall curves, for six NGS data sets representing six diverse species, demonstrates substantial improvements in prediction performance compared to three methods: miRDeep2, miRanalyzer, and mirnovo. The individual contributions of expression-based and sequence-based features are also examined and we demonstrate that their combination is more effective than either alone.

摘要

已经开发了使用一系列基于序列的特征的从头鉴定 microRNA (miRNA) 的方法。随着下一代测序 (NGS) 转录组数据的可用性不断增加,需要一种既能整合 NGS 转录表达模式,又能整合先进的基于基因组序列的方法的 miRNA 鉴定方法。虽然 miRDeep2 确实检查了假定 miRNA 序列的预测二级结构,但它没有利用最先进的从头方法中使用的许多基于序列的特征。同时,其他基于 NGS 的方法,如 miRanalyzer,强调基于序列的特征,而不利用反映 miRNA 生物合成的先进基于表达的特征。这为将基于 NGS 的分析优势与最近基于序列的 miRNA 预测的进展结合起来提供了机会。我们在这里开发了一种方法,即使用综合证据的 microRNA 预测 (miPIE),它整合了基于表达和基于序列的特征,以实现显著提高的 miRNA 预测性能。特征选择确定了 20 个最具区分性的特征,其中 3 个反映了严格的基于表达的信息。使用精度-召回曲线进行评估,针对六个代表六个不同物种的 NGS 数据集,与三种方法(miRDeep2、miRanalyzer 和 mirnovo)相比,miRNA 预测性能得到了显著提高。还检查了基于表达和基于序列的特征的个体贡献,并证明它们的组合比单独使用更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验