Suppr超能文献

PNME——一种基因-基因并行网络模块提取方法。

PNME - A gene-gene parallel network module extraction method.

作者信息

Jaiswal Bikash, Utkarsh Kumar, Bhattacharyya D K

机构信息

Dept. of Computer Science and Engineering, Tezpur University, Napaam, Tezpur 784028, Assam, India.

出版信息

J Genet Eng Biotechnol. 2018 Dec;16(2):447-457. doi: 10.1016/j.jgeb.2018.08.003. Epub 2018 Dec 11.

Abstract

In the domain of gene-gene network analysis, construction of co-expression networks and extraction of network modules have opened up enormous possibilities for exploring the role of genes in biological processes. Through such analysis, one can extract interesting behaviour of genes and would help in the discovery of genes participating in a common biological process. However, such network analysis methods in sequential processing mode often have been found time-consuming even for a moderately sized dataset. It is observed that most existing network construction techniques are capable of handling only positive correlations in gene-expression data whereas biologically-significant genes exhibit both positive and negative correlations. To address these problems, we propose a faster method for construction and analysis of gene-gene network and extraction of modules using a similarity measure which can identify both negatively and positively correlated co-expressed patterns. Our method utilizes General-purpose computing on graphics processing units (GPGPU) to provide fast, efficient and parallel extraction of biologically relevant network modules to support biomarker identification for breast cancer. The modules extracted are validated using p-value and q-value for both metastasis and non-metastasis stages of breast cancer. PNME has been found capable of identifying interesting biomarkers for this critical disease. We identified six genes with the interesting behaviours which have been found to cause breast cancer in homo-sapiens.

摘要

在基因-基因网络分析领域,共表达网络的构建和网络模块的提取为探索基因在生物过程中的作用开辟了巨大可能性。通过这种分析,可以提取基因的有趣行为,并有助于发现参与共同生物过程的基因。然而,即使对于中等规模的数据集,这种顺序处理模式下的网络分析方法通常也很耗时。据观察,大多数现有的网络构建技术仅能处理基因表达数据中的正相关关系,而具有生物学意义的基因同时表现出正相关和负相关。为了解决这些问题,我们提出了一种更快的方法,用于使用一种相似性度量来构建和分析基因-基因网络以及提取模块,该相似性度量可以识别正相关和负相关的共表达模式。我们的方法利用图形处理单元(GPGPU)上的通用计算来快速、高效且并行地提取生物学相关的网络模块,以支持乳腺癌生物标志物的识别。所提取的模块使用乳腺癌转移和非转移阶段的p值和q值进行验证。已发现PNME能够为这种关键疾病识别有趣的生物标志物。我们鉴定出六个具有有趣行为的基因,这些基因已被发现会在智人中引发乳腺癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5da/6353772/6da8e6a9f52d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验