Suppr超能文献

铁载体介导的橄榄石溶解动力学。

The kinetics of siderophore-mediated olivine dissolution.

机构信息

Department of Earth Sciences, University of Southern California, Los Angeles, California.

出版信息

Geobiology. 2019 Jul;17(4):401-416. doi: 10.1111/gbi.12332. Epub 2019 Feb 7.

Abstract

Silicate minerals represent an important reservoir of nutrients at Earth's surface and a source of alkalinity that modulates long-term geochemical cycles. Due to the slow kinetics of primary silicate mineral dissolution and the potential for nutrient immobilization by secondary mineral precipitation, the bioavailability of many silicate-bound nutrients may be limited by the ability of micro-organisms to actively scavenge these nutrients via redox alteration and/or organic ligand production. In this study, we use targeted laboratory experiments with olivine and the siderophore deferoxamine B to explore how microbial ligands affect nutrient (Fe) release and the overall rate of mineral dissolution. Our results show that olivine dissolution rates are accelerated in the presence of micromolar concentrations of deferoxamine B. Based on the non-linear decrease in rates with time and formation of a Fe -ligand complex, we attribute this acceleration in dissolution rates to the removal of an oxidized surface coating that forms during the dissolution of olivine at circum-neutral pH in the presence of O and the absence of organic ligands. While increases in dissolution rates are observed with micromolar concentrations of siderophores, it remains unclear whether such conditions could be realized in natural environments due to the strong physiological control on microbial siderophore production. So, to contextualize our experimental results, we also developed a feedback model, which considers how microbial physiology and ligand-promoted mineral dissolution kinetics interact to control the extent of biotic enhancement of dissolution rates expected for different environments. The model predicts that physiological feedbacks severely limit the extent to which dissolution rates may be enhanced by microbial activity, though the rate of physical transport modulates this limitation.

摘要

硅酸盐矿物是地球表面营养物质的重要储存库,也是调节长期地球化学循环的碱性物质的来源。由于原生硅酸盐矿物溶解的动力学速度较慢,以及次生矿物沉淀可能导致营养物质固定,许多与硅酸盐结合的营养物质的生物利用度可能受到微生物通过氧化还原变化和/或有机配体产生主动获取这些营养物质的能力的限制。在这项研究中,我们使用有橄榄石和铁载体去铁胺 B 的靶向实验室实验,探索微生物配体如何影响营养物质(Fe)的释放和整体矿物溶解速率。我们的结果表明,在存在低毫摩尔浓度的去铁胺 B 的情况下,橄榄石的溶解速率会加快。基于速率随时间的非线性下降和形成 Fe-配体复合物,我们将这种溶解速率的加速归因于在中性 pH 条件下,在没有有机配体的情况下,O 存在时形成的氧化表面涂层的去除。虽然在存在铁载体的情况下观察到溶解速率增加,但由于微生物铁载体产生受到强烈的生理控制,因此仍不清楚这种条件是否可以在自然环境中实现。因此,为了使我们的实验结果具有背景意义,我们还开发了一个反馈模型,该模型考虑了微生物生理学和配体促进的矿物溶解动力学如何相互作用,以控制不同环境中生物增强溶解速率的程度。该模型预测,生理反馈严重限制了微生物活性增强溶解速率的程度,尽管物理传输的速率调节了这种限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验