Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
Department of Surgery, Mayo Clinic, Rochester, Minnesota.
JAMA Netw Open. 2019 Feb 1;2(2):e188102. doi: 10.1001/jamanetworkopen.2018.8102.
Emerging evidence suggests that postprandial glycemic responses (PPGRs) to food may be influenced by and predicted according to characteristics unique to each individual, including anthropometric and microbiome variables. Interindividual diversity in PPGRs to food requires a personalized approach for the maintenance of healthy glycemic levels.
To describe and predict the glycemic responses of individuals to a diverse array of foods using a model that considers the physiology and microbiome of the individual in addition to the characteristics of the foods consumed.
DESIGN, SETTING, AND PARTICIPANTS: This cohort study using a personalized predictive model enrolled 327 individuals without diabetes from October 11, 2016, to December 13, 2017, in Minnesota and Florida to be part of a study lasting 6 days. The study measured anthropometric variables, described the gut microbial composition, and assessed blood glucose levels every 5 minutes using a continuous glucose monitor. Participants logged their food and activity information for the duration of the study. A predictive model of individualized PPGRs to a diverse array of foods was trained and applied.
Glycemic responses to food consumed over 6 days for each participant. The predictive model of personalized PPGRs considered individual features, including the microbiome, in addition to the features of the foods consumed.
Postprandial response to the same foods varied across 327 individuals (mean [SD] age, 45 [12] years; 78.0% female). A model predicting each individual's responses to food that considers several individual factors in addition to food features had better overall performance (R = 0.62) than current standard-of-care approaches using nutritional content alone (R = 0.34 for calories and R = 0.40 for carbohydrates) to control postprandial glycemic levels.
Across the cohort of adults without diabetes who were examined, a personalized predictive model that considers unique features of the individual, such as clinical characteristics, physiological variables, and the microbiome, in addition to nutrient content was more predictive than current dietary approaches that focus only on the calorie or carbohydrate content of foods. Providing individuals with tools to manage their glycemic responses to food based on personalized predictions of their PPGRs may allow them to maintain their blood glucose levels within limits associated with good health.
新出现的证据表明,食物的餐后血糖反应(PPGR)可能受到个体特有的特征的影响,并根据这些特征进行预测,这些特征包括人体测量学和微生物组变量。食物的 PPGR 在个体之间存在差异,这就需要采取个性化的方法来维持健康的血糖水平。
使用一种模型来描述和预测个体对各种食物的血糖反应,该模型除了考虑所摄入食物的特征外,还考虑个体的生理学和微生物组特征。
设计、地点和参与者:本队列研究采用个性化预测模型,于 2016 年 10 月 11 日至 2017 年 12 月 13 日在明尼苏达州和佛罗里达州招募了 327 名无糖尿病个体参与为期 6 天的研究。该研究测量了人体测量学变量,描述了肠道微生物组成,并使用连续血糖监测仪每 5 分钟评估一次血糖水平。参与者在研究期间记录了他们的食物和活动信息。对一个针对各种食物的个体化 PPGR 的预测模型进行了训练和应用。
对每个参与者在 6 天内所摄入食物的血糖反应。个性化 PPGR 预测模型除了考虑所摄入食物的特征外,还考虑了个体特征,包括微生物组。
327 名个体(平均[标准差]年龄为 45[12]岁;78.0%为女性)对相同食物的餐后反应各不相同。与仅使用营养成分(卡路里的 R2 为 0.34,碳水化合物的 R2 为 0.40)来控制餐后血糖水平的现有标准护理方法相比,该模型通过考虑除食物特征外的几个个体因素来预测个体对食物的反应,具有更好的整体性能(R2=0.62)。
在接受检查的无糖尿病成年队列中,与仅关注食物的卡路里或碳水化合物含量的现有饮食方法相比,除了营养成分外,还考虑个体独特特征(如临床特征、生理变量和微生物组)的个性化预测模型对个体的餐后血糖反应具有更好的预测性。为个体提供基于他们的 PPGR 个性化预测来管理他们对食物的血糖反应的工具,可能使他们能够将血糖水平维持在与健康相关的良好范围内。