Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA.
Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
Nat Commun. 2019 Feb 8;10(1):675. doi: 10.1038/s41467-019-08644-w.
High mass loading and fast charge transport are two crucial but often mutually exclusive characteristics of pseudocapacitors. On conventional carbon supports, high mass loadings inevitably lead to sluggish electron conduction and ion diffusion due to thick pseudocapacitive layers and clogged pores. Here we present a design principle of carbon supports, utilizing self-assembly and microphase-separation of block copolymers. We synthesize porous carbon fibers (PCFs) with uniform mesopores of 11.7 nm, which are partially filled with MnO of <2 nm in thickness. The uniform mesopores and ultrathin MnO enable fast electron/ion transport comparable to electrical-double-layer-capacitive carbons. At mass loadings approaching 7 mg cm, the gravimetric and areal capacitances of MnO (~50% of total mass) reach 1148 F g and 3141 mF cm, respectively. Our MnO-coated PCFs outperform other MnO-based electrodes at similar loadings, highlighting the great promise of block copolymers for designing PCF supports for electrochemical applications.
高质量负载和快速电荷传输是赝电容器的两个关键但往往相互排斥的特性。在传统的碳载体上,由于厚的赝电容层和堵塞的孔,高的质量负载不可避免地导致电子传导和离子扩散缓慢。在这里,我们提出了一种利用嵌段共聚物自组装和微相分离的碳载体设计原理。我们合成了具有均匀介孔(11.7nm)的多孔碳纤维(PCF),其中部分填充了厚度小于 2nm 的 MnO。均匀的介孔和超薄的 MnO 使电子/离子传输速度与双电层电容碳相当。在质量负载接近 7mgcm 时,MnO(占总质量的~50%)的重量和面积电容分别达到 1148Fg 和 3141mFcm。我们的 MnO 涂层 PCF 在类似负载下优于其他基于 MnO 的电极,这突显了嵌段共聚物在设计电化学应用的 PCF 载体方面的巨大潜力。