Suppr超能文献

从 CO2 的捕获、存储和利用中为化工行业带来价值:甲酸生产的动态生命周期评价。

Bringing value to the chemical industry from capture, storage and use of CO: A dynamic LCA of formic acid production.

机构信息

Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. de los Castros s/n, 39005, Santander, Spain.

UCL Institute for Sustainable Resources, The Bartlett School of Environment, Energy and Resources, University College of London, London, United Kingdom.

出版信息

Sci Total Environ. 2019 May 1;663:738-753. doi: 10.1016/j.scitotenv.2019.01.395. Epub 2019 Jan 31.

Abstract

Low carbon options for the chemical industry include switching from fossil to renewable energy, adopting new low-carbon production processes, along with retrofitting current plants with carbon capture for ulterior use (CCU technologies) or storage (CCS). In this paper, we combine a dynamic Life Cycle Assessment (d-LCA) with economic analysis to explore a potential transition to low-carbon manufacture of formic acid. We propose new methods to enable early technical, environmental and economic assessment of formic acid manufacture by electrochemical reduction of CO (CCU), and compare this production route to the conventional synthesis pathways and to storing CO in geological storage (CCS). Both CCU and CCS reduce carbon emissions in particular scenarios, although the uncertainty in results suggests that further research and scale-up validation are needed to clarify the relative emission reduction compared to conventional process pathways. There are trade-offs between resource security, cost and emissions between CCU and CCS systems. As expected, the CCS technology yields greater reductions in CO emissions than the CCU scenarios and the conventional processes. However, compared to CCS systems, CCU has better economic potential and lower fossil consumption, especially when powered by renewable electricity. The integration of renewable energy in the chemical industry has an important climate mitigation role, especially for processes with high electrical and thermal energy demands.

摘要

化工行业的低碳选择包括从化石能源转向可再生能源,采用新的低碳生产工艺,以及对现有工厂进行 retrofit(改造),以进行进一步的碳捕集利用(CCU 技术)或封存(CCS)。在本文中,我们将动态生命周期评估(d-LCA)与经济分析相结合,探索甲酸低碳制造的潜在转型。我们提出了新的方法,通过电化学还原 CO(CCU)来实现甲酸制造的早期技术、环境和经济评估,并将这种生产途径与传统的合成途径以及将 CO 储存在地质储存(CCS)中进行比较。CCU 和 CCS 都减少了特定情景下的碳排放,但结果的不确定性表明,需要进一步的研究和扩大规模验证,以明确与传统工艺途径相比的相对减排量。CCU 和 CCS 系统之间在资源安全、成本和排放方面存在权衡。不出所料,CCS 技术比 CCU 情景和传统工艺产生的 CO 排放减少更多。然而,与 CCS 系统相比,CCU 具有更好的经济潜力和更低的化石能源消耗,尤其是在使用可再生电力时。可再生能源在化工行业中的整合具有重要的气候缓解作用,特别是对于那些需要高电能和热能的工艺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验