Young E D, Shahar A, Nimmo F, Schlichting H E, Schauble E A, Tang H, Labidi J
Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA, USA.
Geophysical Laboratory, Carnegie Institution for Science, Washington DC, USA.
Icarus. 2019 May 1;323:1-15. doi: 10.1016/j.icarus.2019.01.012. Epub 2019 Jan 21.
Silicon and Mg in differentiated rocky bodies exhibit heavy isotope enrichments that have been attributed to evaporation of partially or entirely molten planetesimals. We evaluate the mechanisms of planetesimal evaporation in the early solar system and the conditions that controled attendant isotope fractionations. Energy balance at the surface of a body accreted within ~1 Myr of CAI formation and heated from within by Al decay results in internal temperatures exceeding the silicate solidus, producing a transient magma ocean with a thin surface boundary layer of order < 1 meter that would be subject to foundering. Bodies that are massive enough to form magma oceans by radioisotope decay (≥ 0.1% ) can retain hot rock vapor even in the absence of ambient nebular gas. We find that a steady-state rock vapor forms within minutes to hours and results from a balance between rates of magma evaporation and atmospheric escape. Vapor pressure buildup adjacent to the surfaces of the evaporating magmas would have inevitably led to an approach to equilibrium isotope partitioning between the vapor phase and the silicate melt. Numerical simulations of this near-equilibrium evaporation process for a body with a radius of ~ 700 km yield a steady-state far-field vapor pressure of 10 bar and a vapor pressure at the surface of 10 bar, corresponding to 95% saturation. Approaches to equilibrium isotope fractionation between vapor and melt should have been the norm during planet formation due to the formation of steady-state rock vapor atmospheres and/or the presence of protostellar gas. We model the Si and Mg isotopic composition of bulk Earth as a consequence of accretion of planetesimals that evaporated subject to the conditions described above. The results show that the best fit to bulk Earth is for a carbonaceous chondrite-like source material with about 12% loss of Mg and 15% loss of Si resulting from near-equilibrium evaporation into the solar protostellar disk of H on timescales of 10 to 10 years.
在分异的岩石天体中,硅和镁呈现出重同位素富集,这被归因于部分或完全熔融的小行星的蒸发。我们评估了早期太阳系中小行星蒸发的机制以及控制伴随同位素分馏的条件。在钙铝包体形成后约100万年内在吸积的天体表面的能量平衡,以及由铝衰变从内部加热,导致内部温度超过硅酸盐固相线,产生一个短暂的岩浆海洋,其表面边界层薄至<1米,该边界层可能会下沉。质量大到足以通过放射性同位素衰变形成岩浆海洋(≥0.1%)的天体,即使在没有周围星云气体的情况下也能保留热的岩石蒸汽。我们发现,在几分钟到几小时内会形成稳态的岩石蒸汽,这是岩浆蒸发速率和大气逃逸速率之间平衡的结果。蒸发岩浆表面附近的蒸气压积累将不可避免地导致气相和硅酸盐熔体之间接近平衡同位素分配。对半径约700公里的天体进行的这种近平衡蒸发过程的数值模拟得出,稳态远场蒸气压为10巴,表面蒸气压为10巴,对应95%的饱和度。由于稳态岩石蒸汽大气的形成和/或原恒星气体的存在,在行星形成过程中,气相和熔体之间接近平衡同位素分馏的情况应该是常态。我们模拟了由于上述条件下蒸发的小行星吸积而导致的地球整体的硅和镁同位素组成。结果表明,对地球整体的最佳拟合是一种类似碳质球粒陨石的源材料,在10到10年的时间尺度上,由于向太阳原恒星盘近平衡蒸发,镁损失约12%,硅损失约15%。