Suppr超能文献

3D打印β-磷酸三钙骨组织工程支架:化学性质对兔胫骨模型生物学特性的影响

3D printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on biological properties in a rabbit tibia model.

作者信息

Nandi Samit Kumar, Fielding Gary, Banerjee Dishary, Bandyopadhyay Amit, Bose Susmita

机构信息

Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, India.

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.

出版信息

J Mater Res. 2018;33(14):1939-1947. doi: 10.1557/jmr.2018.233. Epub 2018 Jul 27.

Abstract

In this study the effects of 3D printed SiO and ZnO doped tricalcium phosphate (TCP) scaffolds with interconnected pores were evaluated on the bone formation and healing properties of a rabbit tibial defect model. Pure and doped TCP scaffolds were fabricated by a ceramic powder-based 3D printing technique and implanted into critical sized rabbit tibial defects for up to 4 months. bone regeneration was evaluated using chronological radiological examination, histological evaluations, SEM micrographs and fluorochrome labeling studies. Radiograph results showed that Si/Zn doped samples had slower degradation kinetics than the pure TCP samples. 3D printing of TCP scaffolds improved bone formation. The addition of dopants in the TCP scaffolds improved osteogenic capabilities when compared to the pure scaffolds. In summary, our findings indicate that addition of dopants to the TCP scaffolds enhanced bone formation and in turn leading to accelerated healing.

摘要

在本研究中,评估了具有相互连通孔隙的3D打印二氧化硅(SiO)和氧化锌(ZnO)掺杂的磷酸三钙(TCP)支架对兔胫骨缺损模型骨形成和愈合特性的影响。通过基于陶瓷粉末的3D打印技术制备了纯TCP支架和掺杂TCP支架,并将其植入到临界尺寸的兔胫骨缺损中长达4个月。使用按时间顺序的放射学检查、组织学评估、扫描电子显微镜(SEM)显微照片和荧光染料标记研究来评估骨再生情况。X射线照片结果显示,硅/锌掺杂样品的降解动力学比纯TCP样品慢。TCP支架的3D打印改善了骨形成。与纯支架相比,在TCP支架中添加掺杂剂提高了成骨能力。总之,我们的研究结果表明,向TCP支架中添加掺杂剂可增强骨形成,进而加速愈合。

相似文献

3
SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
J Biomed Mater Res B Appl Biomater. 2015 Apr;103(3):679-90. doi: 10.1002/jbm.b.33239. Epub 2014 Jul 8.
4
Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
Ann Biomed Eng. 2018 Sep;46(9):1241-1253. doi: 10.1007/s10439-018-2040-8. Epub 2018 May 4.
9
3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration.
ACS Omega. 2023 Oct 2;8(41):37918-37926. doi: 10.1021/acsomega.3c03284. eCollection 2023 Oct 17.
10

引用本文的文献

1
Nanotechnology in Orthopedic Care: Advances in Drug Delivery, Implants, and Biocompatibility Considerations.
Int J Nanomedicine. 2025 Jul 21;20:9251-9274. doi: 10.2147/IJN.S523462. eCollection 2025.
3
Comparing ceramic Fischer-Koch-S and gyroid TPMS scaffolds for potential in bone tissue engineering.
Front Bioeng Biotechnol. 2024 Aug 13;12:1410837. doi: 10.3389/fbioe.2024.1410837. eCollection 2024.
6
Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration.
Biology (Basel). 2024 Apr 2;13(4):237. doi: 10.3390/biology13040237.
7
Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds.
Nanomicro Lett. 2023 Oct 31;15(1):239. doi: 10.1007/s40820-023-01187-2.
8
Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering.
BME Front. 2023 Jan 31;4:0004. doi: 10.34133/bmef.0004. eCollection 2023.
9
Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment.
Research (Wash D C). 2023 Oct 9;6:0239. doi: 10.34133/research.0239. eCollection 2023.
10
Three-Dimensional Scaffolds for Bone Tissue Engineering.
Bioengineering (Basel). 2023 Jun 25;10(7):759. doi: 10.3390/bioengineering10070759.

本文引用的文献

1
Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
Ann Biomed Eng. 2018 Sep;46(9):1241-1253. doi: 10.1007/s10439-018-2040-8. Epub 2018 May 4.
2
In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.
Ann Biomed Eng. 2017 Jan;45(1):249-260. doi: 10.1007/s10439-016-1673-8. Epub 2016 Jun 15.
4
Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
J Tissue Eng Regen Med. 2013 Aug;7(8):631-41. doi: 10.1002/term.555. Epub 2012 Mar 7.
5
Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review.
Acta Biomater. 2012 Apr;8(4):1401-21. doi: 10.1016/j.actbio.2011.11.017. Epub 2011 Nov 20.
7
The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo.
Mater Sci Eng C Mater Biol Appl. 2009 Apr 30;29(3):969-975. doi: 10.1016/j.msec.2008.08.021.
8
Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP.
Bone. 2011 Jun 1;48(6):1282-90. doi: 10.1016/j.bone.2011.03.685. Epub 2011 Mar 16.
9
Commentary: Deciphering the link between architecture and biological response of a bone graft substitute.
Acta Biomater. 2011 Feb;7(2):478-84. doi: 10.1016/j.actbio.2010.08.008. Epub 2010 Aug 13.
10
Bone remodeling in onlay beta-tricalcium phosphate and coral grafts to rat calvaria: microcomputerized tomography analysis.
J Oral Implantol. 2011 Aug;37(4):379-86. doi: 10.1563/AAID-JOI-D-09-00128.1. Epub 2010 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验