Suppr超能文献

用于承重植入物的激光加工多孔钛植入物的体内反应。

In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

作者信息

Bandyopadhyay Amit, Shivaram Anish, Tarafder Solaiman, Sahasrabudhe Himanshu, Banerjee Dishary, Bose Susmita

机构信息

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA.

出版信息

Ann Biomed Eng. 2017 Jan;45(1):249-260. doi: 10.1007/s10439-016-1673-8. Epub 2016 Jun 15.

Abstract

Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

摘要

用于增强承重植入物骨整合的多孔金属植入物的应用正在增加。在这项工作中,使用激光工程净成型(LENS™)制造了孔隙率为25体积%的多孔钛植入物,以测量孔隙率对体内骨组织整合的影响。LENS™ 加工的多孔钛植入物表面进一步用TiO纳米管修饰,以提高这些植入物的细胞相容性。我们假设通过增材制造产生的相互连通的孔隙率将增强体内骨组织整合。为了验证我们的假设,使用雄性Sprague-Dawley大鼠的股骨远端模型进行了为期4周和10周的体内实验。通过微型计算机断层扫描(CT)、组织学成像、扫描电子显微镜和机械推出试验对体内样本进行表征。我们的结果表明,与用作对照的致密钛植入物相比,孔隙率在建立早期骨整合方面发挥了重要作用,无论有无表面改性,多孔植入物与周围组织之间均形成了牢固的界面结合。

相似文献

1
In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.
Ann Biomed Eng. 2017 Jan;45(1):249-260. doi: 10.1007/s10439-016-1673-8. Epub 2016 Jun 15.
3
Understanding long-term silver release from surface modified porous titanium implants.
Acta Biomater. 2017 Aug;58:550-560. doi: 10.1016/j.actbio.2017.05.048. Epub 2017 May 29.
4
Low stiffness porous Ti structures for load-bearing implants.
Acta Biomater. 2007 Nov;3(6):997-1006. doi: 10.1016/j.actbio.2007.03.008. Epub 2007 May 25.
5
Direct comparison of additively manufactured porous titanium and tantalum implants towards osseointegration.
Addit Manuf. 2019 Aug;28:259-266. doi: 10.1016/j.addma.2019.04.025. Epub 2019 May 1.
6
Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes.
Int J Nanomedicine. 2020 Nov 3;15:8583-8594. doi: 10.2147/IJN.S270311. eCollection 2020.
7
Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants.
Acta Biomater. 2010 Apr;6(4):1640-8. doi: 10.1016/j.actbio.2009.11.011. Epub 2009 Nov 12.
8
Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds.
Biomaterials. 2011 Jan;32(2):330-8. doi: 10.1016/j.biomaterials.2010.08.102.
10
Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:690-701. doi: 10.1016/j.msec.2015.10.069. Epub 2015 Oct 28.

引用本文的文献

4
Osseointegration in additive-manufactured titanium implants: A systematic review on the need for surface treatment.
Heliyon. 2023 Jun 10;9(6):e17105. doi: 10.1016/j.heliyon.2023.e17105. eCollection 2023 Jun.
5
Porous metal implants: processing, properties, and challenges.
Int J Extrem Manuf. 2023 Sep 1;5(3):032014. doi: 10.1088/2631-7990/acdd35. Epub 2023 Jul 13.
6
Improving Biocompatibility for Next Generation of Metallic Implants.
Prog Mater Sci. 2023 Mar;133. doi: 10.1016/j.pmatsci.2022.101053. Epub 2022 Nov 29.
7
Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges.
J Funct Biomater. 2022 Jun 21;13(3):86. doi: 10.3390/jfb13030086.
8
Applications of Titanium Dioxide Nanostructure in Stomatology.
Molecules. 2022 Jun 17;27(12):3881. doi: 10.3390/molecules27123881.
9
Effect of Angiogenesis in Bone Tissue Engineering.
Ann Biomed Eng. 2022 Aug;50(8):898-913. doi: 10.1007/s10439-022-02970-9. Epub 2022 May 7.

本文引用的文献

1
Bone regeneration performance of surface-treated porous titanium.
Biomaterials. 2014 Aug;35(24):6172-81. doi: 10.1016/j.biomaterials.2014.04.054. Epub 2014 May 6.
2
Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP.
Bone. 2011 Jun 1;48(6):1282-90. doi: 10.1016/j.bone.2011.03.685. Epub 2011 Mar 16.
3
Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
Acta Biomater. 2009 Oct;5(8):3215-23. doi: 10.1016/j.actbio.2009.05.008. Epub 2009 May 15.
4
Titanium dioxide nanotubes enhance bone bonding in vivo.
J Biomed Mater Res A. 2010 Mar 1;92(3):1218-24. doi: 10.1002/jbm.a.32463.
6
Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants.
J Mater Sci Mater Med. 2009 Dec;20 Suppl 1:S29-34. doi: 10.1007/s10856-008-3478-2. Epub 2008 Jun 3.
8
TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
J Biomed Mater Res A. 2009 Jul;90(1):225-37. doi: 10.1002/jbm.a.32088.
9
Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
Acta Biomater. 2008 May;4(3):697-706. doi: 10.1016/j.actbio.2007.10.005. Epub 2007 Oct 24.
10
Bone growth in rapid prototyped porous titanium implants.
J Biomed Mater Res A. 2008 Jun 1;85(3):664-73. doi: 10.1002/jbm.a.31468.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验