Suppr超能文献

稳健回归在最优个体化治疗规则中的应用。

Robust regression for optimal individualized treatment rules.

机构信息

Department of Statistics, North Carolina State University, Raleigh, North Carolina.

Department of Mathematics, University of Arizona, Tucson, Arizona.

出版信息

Stat Med. 2019 May 20;38(11):2059-2073. doi: 10.1002/sim.8102. Epub 2019 Feb 11.

Abstract

Because different patients may respond quite differently to the same drug or treatment, there is an increasing interest in discovering individualized treatment rules. In particular, there is an emerging need to find optimal individualized treatment rules, which would lead to the "best" clinical outcome. In this paper, we propose a new class of loss functions and estimators based on robust regression to estimate the optimal individualized treatment rules. Compared to existing estimation methods in the literature, the new estimators are novel and advantageous in the following aspects. First, they are robust against skewed, heterogeneous, heavy-tailed errors or outliers in data. Second, they are robust against a misspecification of the baseline function. Third, under some general situations, the new estimator coupled with the pinball loss approximately maximizes the outcome's conditional quantile instead of the conditional mean, which leads to a more robust optimal individualized treatment rule than the traditional mean-based estimators. Consistency and asymptotic normality of the proposed estimators are established. Their empirical performance is demonstrated via extensive simulation studies and an analysis of an AIDS data set.

摘要

由于不同的患者对同一药物或治疗可能会有截然不同的反应,因此人们越来越感兴趣于发现个体化的治疗规则。特别是,人们越来越需要找到最佳的个体化治疗规则,这将带来“最佳”的临床效果。在本文中,我们提出了一类新的基于稳健回归的损失函数和估计器,用于估计最优的个体化治疗规则。与文献中的现有估计方法相比,新的估计器在以下几个方面具有新颖性和优势。首先,它们对数据中的偏态、异质性、重尾误差或异常值具有稳健性。其次,它们对基线函数的误设定具有稳健性。第三,在某些一般情况下,新的估计器与弹球损失相结合,近似最大化了结果的条件分位数,而不是条件均值,这比传统的基于均值的估计器产生了更稳健的最优个体化治疗规则。我们建立了所提出的估计器的一致性和渐近正态性。通过广泛的模拟研究和对艾滋病数据集的分析,展示了它们的经验性能。

相似文献

1
Robust regression for optimal individualized treatment rules.稳健回归在最优个体化治疗规则中的应用。
Stat Med. 2019 May 20;38(11):2059-2073. doi: 10.1002/sim.8102. Epub 2019 Feb 11.
5

引用本文的文献

1
Robust Estimation of Heterogeneous Treatment Effects: An Algorithm-based Approach.异质性治疗效果的稳健估计:一种基于算法的方法。
Commun Stat Simul Comput. 2023;52(10):4981-4998. doi: 10.1080/03610918.2021.1974883. Epub 2021 Sep 14.

本文引用的文献

1
Quantile-Optimal Treatment Regimes.分位数最优治疗方案
J Am Stat Assoc. 2018;113(523):1243-1254. doi: 10.1080/01621459.2017.1330204. Epub 2018 Jun 8.
2
Interactive Q-learning for Quantiles.用于分位数的交互式Q学习
J Am Stat Assoc. 2017;112(518):638-649. doi: 10.1080/01621459.2016.1155993. Epub 2017 Mar 31.
7
A robust method for estimating optimal treatment regimes.一种估计最优治疗方案的稳健方法。
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.
8
Causal inference on quantiles with an obstetric application.具有产科应用的分位数因果推断
Biometrics. 2012 Sep;68(3):697-706. doi: 10.1111/j.1541-0420.2011.01712.x. Epub 2011 Dec 7.
9
Variable selection for optimal treatment decision.变量选择以实现最佳治疗决策。
Stat Methods Med Res. 2013 Oct;22(5):493-504. doi: 10.1177/0962280211428383. Epub 2011 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验