Suppr超能文献

稳健回归在最优个体化治疗规则中的应用。

Robust regression for optimal individualized treatment rules.

机构信息

Department of Statistics, North Carolina State University, Raleigh, North Carolina.

Department of Mathematics, University of Arizona, Tucson, Arizona.

出版信息

Stat Med. 2019 May 20;38(11):2059-2073. doi: 10.1002/sim.8102. Epub 2019 Feb 11.

Abstract

Because different patients may respond quite differently to the same drug or treatment, there is an increasing interest in discovering individualized treatment rules. In particular, there is an emerging need to find optimal individualized treatment rules, which would lead to the "best" clinical outcome. In this paper, we propose a new class of loss functions and estimators based on robust regression to estimate the optimal individualized treatment rules. Compared to existing estimation methods in the literature, the new estimators are novel and advantageous in the following aspects. First, they are robust against skewed, heterogeneous, heavy-tailed errors or outliers in data. Second, they are robust against a misspecification of the baseline function. Third, under some general situations, the new estimator coupled with the pinball loss approximately maximizes the outcome's conditional quantile instead of the conditional mean, which leads to a more robust optimal individualized treatment rule than the traditional mean-based estimators. Consistency and asymptotic normality of the proposed estimators are established. Their empirical performance is demonstrated via extensive simulation studies and an analysis of an AIDS data set.

摘要

由于不同的患者对同一药物或治疗可能会有截然不同的反应,因此人们越来越感兴趣于发现个体化的治疗规则。特别是,人们越来越需要找到最佳的个体化治疗规则,这将带来“最佳”的临床效果。在本文中,我们提出了一类新的基于稳健回归的损失函数和估计器,用于估计最优的个体化治疗规则。与文献中的现有估计方法相比,新的估计器在以下几个方面具有新颖性和优势。首先,它们对数据中的偏态、异质性、重尾误差或异常值具有稳健性。其次,它们对基线函数的误设定具有稳健性。第三,在某些一般情况下,新的估计器与弹球损失相结合,近似最大化了结果的条件分位数,而不是条件均值,这比传统的基于均值的估计器产生了更稳健的最优个体化治疗规则。我们建立了所提出的估计器的一致性和渐近正态性。通过广泛的模拟研究和对艾滋病数据集的分析,展示了它们的经验性能。

相似文献

1
Robust regression for optimal individualized treatment rules.
Stat Med. 2019 May 20;38(11):2059-2073. doi: 10.1002/sim.8102. Epub 2019 Feb 11.
2
Statistical learning of origin-specific statically optimal individualized treatment rules.
Int J Biostat. 2007;3(1):Article 6. doi: 10.2202/1557-4679.1040.
5
Robust outcome weighted learning for optimal individualized treatment rules.
J Biopharm Stat. 2019;29(4):606-624. doi: 10.1080/10543406.2019.1633657. Epub 2019 Jul 16.
6
Improved doubly robust estimation in learning optimal individualized treatment rules.
J Am Stat Assoc. 2021;116(533):283-294. doi: 10.1080/01621459.2020.1725522. Epub 2020 Sep 8.
7
Causal effect models for realistic individualized treatment and intention to treat rules.
Int J Biostat. 2007;3(1):Article 3. doi: 10.2202/1557-4679.1022.
8
Decision making and uncertainty quantification for individualized treatments using Bayesian Additive Regression Trees.
Stat Methods Med Res. 2019 Apr;28(4):1079-1093. doi: 10.1177/0962280217746191. Epub 2017 Dec 18.
10
Estimating optimal individualized treatment rules with multistate processes.
Biometrics. 2023 Dec;79(4):2830-2842. doi: 10.1111/biom.13864. Epub 2023 Apr 17.

引用本文的文献

1
Robust Estimation of Heterogeneous Treatment Effects: An Algorithm-based Approach.
Commun Stat Simul Comput. 2023;52(10):4981-4998. doi: 10.1080/03610918.2021.1974883. Epub 2021 Sep 14.

本文引用的文献

1
Quantile-Optimal Treatment Regimes.
J Am Stat Assoc. 2018;113(523):1243-1254. doi: 10.1080/01621459.2017.1330204. Epub 2018 Jun 8.
2
Interactive Q-learning for Quantiles.
J Am Stat Assoc. 2017;112(518):638-649. doi: 10.1080/01621459.2016.1155993. Epub 2017 Mar 31.
3
Q- and A-learning Methods for Estimating Optimal Dynamic Treatment Regimes.
Stat Sci. 2014 Nov;29(4):640-661. doi: 10.1214/13-STS450.
4
Estimation of treatment policies based on functional predictors.
Stat Sin. 2014 Jul;24(3):1461-1485. doi: 10.5705/ss.2012.196.
6
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
7
A robust method for estimating optimal treatment regimes.
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.
8
Causal inference on quantiles with an obstetric application.
Biometrics. 2012 Sep;68(3):697-706. doi: 10.1111/j.1541-0420.2011.01712.x. Epub 2011 Dec 7.
9
Variable selection for optimal treatment decision.
Stat Methods Med Res. 2013 Oct;22(5):493-504. doi: 10.1177/0962280211428383. Epub 2011 Nov 23.
10
Improving efficiency of inferences in randomized clinical trials using auxiliary covariates.
Biometrics. 2008 Sep;64(3):707-715. doi: 10.1111/j.1541-0420.2007.00976.x. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验