Institute of Physical and Theoretical Chemistry , TU Braunschweig , Rebenring 56 , Braunschweig 38106 , Germany.
Department of Physical Chemistry II , Ruhr University Bochum , Universitätsstrasse 150 , Bochum 44801 , Germany.
J Am Chem Soc. 2019 Mar 20;141(11):4660-4669. doi: 10.1021/jacs.8b13025. Epub 2019 Feb 21.
In cells, proteins are embedded in a crowded environment that controls their properties via manifold avenues including weak protein-macromolecule interactions. A molecular level understanding of these quinary interactions and their contribution to protein stability, function, and localization in the cell is central to modern structural biology. Using a mutational analysis to quantify the energetic contributions of single amino acids to the stability of the ALS related protein superoxide dismutase I (SOD1) in mammalian cells, we show that quinary interactions destabilize SOD1 by a similar energetic offset for most of the mutants, but there are notable exceptions: Mutants that alter its surface properties can even lead to a stabilization of the protein in the cell as compared to the test tube. In conclusion, quinary interactions can amplify and even reverse the mutational response of proteins, being a key aspect in pathogenic protein misfolding and aggregation.
在细胞中,蛋白质嵌入在一个拥挤的环境中,通过多种途径控制其性质,包括弱的蛋白质-大分子相互作用。对这些五重相互作用及其对蛋白质稳定性、功能和在细胞中定位的贡献的分子水平理解是现代结构生物学的核心。我们使用突变分析来量化单个氨基酸对哺乳动物细胞中与肌萎缩侧索硬化症相关的蛋白质超氧化物歧化酶 I (SOD1)稳定性的能量贡献,结果表明,五重相互作用通过相似的能量偏移使 SOD1 失稳,对于大多数突变体都是如此,但也有一些显著的例外:改变其表面性质的突变体甚至可以使蛋白质在细胞中比在试管中更加稳定。总之,五重相互作用可以放大甚至反转蛋白质的突变反应,是致病蛋白错误折叠和聚集的关键因素。