Suppr超能文献

微流控芯片上离体组织的双向通讯:在肿瘤-淋巴结相互作用中的应用。

Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor-lymph node interaction.

机构信息

Department of Chemistry, University of Virginia, Charlottesville, VA, USA.

出版信息

Lab Chip. 2019 Mar 13;19(6):1013-1026. doi: 10.1039/c8lc00957k.

Abstract

Experimentally accessible tools to replicate the complex biological events of in vivo organs offer the potential to reveal mechanisms of disease and potential routes to therapy. In particular, models of inter-organ communication are emerging as the next essential step towards creating a body-on-a-chip, and may be particularly useful for poorly understood processes such as tumor immunity. In this paper, we report the first multi-compartment microfluidic chip that continuously recirculates a small volume of media through two ex vivo tissue samples to support inter-organ cross-talk via secreted factors. To test on-chip communication, protein release and capture were quantified using well-defined artificial tissue samples and model proteins. Proteins released by one sample were transferred to the downstream reservoir and detectable in the downstream sample. Next, the chip was applied to model the communication between a tumor and a lymph node, to test whether on-chip dual-organ culture could recreate key features of tumor-induced immune suppression. Slices of murine lymph node were co-cultured with tumor or healthy tissue on-chip with recirculating media, then tested for their ability to respond to T cell stimulation. Interestingly, lymph node slices co-cultured with tumor slices appeared more immunosuppressed than those co-cultured with healthy tissue, suggesting that the chip may successfully model some features of tumor-immune interaction. In conclusion, this new microfluidic system provides on-chip co-culture of pairs of tissue slices under continuous recirculating flow, and has the potential to model complex inter-organ communication ex vivo with full experimental accessibility of the tissues and their media.

摘要

实验上可及的工具可复制体内器官的复杂生物学事件,从而有可能揭示疾病的机制和潜在的治疗途径。特别是,器官间通讯模型作为创建芯片上器官的下一个重要步骤正在出现,对于肿瘤免疫等理解较差的过程可能特别有用。在本文中,我们报告了第一个多腔室微流控芯片,该芯片通过两个离体组织样本连续再循环小体积介质,以通过分泌因子支持器官间串扰。为了测试芯片上的通讯,使用明确定义的人工组织样本和模型蛋白来定量测量蛋白质的释放和捕获。一个样本释放的蛋白质被转移到下游储液器中,并可在下游样本中检测到。接下来,将该芯片应用于模拟肿瘤和淋巴结之间的通讯,以测试芯片上的双器官培养是否可以再现肿瘤诱导免疫抑制的关键特征。将鼠淋巴结切片与肿瘤或健康组织在带有再循环介质的芯片上共培养,然后测试其对 T 细胞刺激的反应能力。有趣的是,与肿瘤切片共培养的淋巴结切片比与健康组织共培养的淋巴结切片更具免疫抑制性,这表明该芯片可能成功地模拟了肿瘤免疫相互作用的某些特征。总之,这种新的微流控系统提供了在连续再循环流动下共培养成对组织切片的芯片上方法,并且有可能在体外模拟复杂的器官间通讯,具有组织及其介质的完全实验可及性。

相似文献

6
Immunofluorescence staining of live lymph node tissue slices.活淋巴结组织切片的免疫荧光染色。
J Immunol Methods. 2019 Jan;464:119-125. doi: 10.1016/j.jim.2018.10.010. Epub 2018 Oct 19.
8
Human Lung Small Airway-on-a-Chip Protocol.人肺小气道芯片实验方案
Methods Mol Biol. 2017;1612:345-365. doi: 10.1007/978-1-4939-7021-6_25.

引用本文的文献

5
Ex Vivo Model of Breast Cancer Cell Invasion in Live Lymph Node Tissue.活淋巴结组织中乳腺癌细胞侵袭的体外模型
ACS Pharmacol Transl Sci. 2025 Feb 10;8(3):690-705. doi: 10.1021/acsptsci.4c00431. eCollection 2025 Mar 14.
9
Mimicking blood and lymphatic vasculatures using microfluidic systems.利用微流控系统模拟血液和淋巴脉管系统。
Biomicrofluidics. 2024 May 6;18(3):031502. doi: 10.1063/5.0175154. eCollection 2024 May.
10
Microphysiological systems as models for immunologically 'cold' tumors.作为免疫“冷”肿瘤模型的微生理系统
Front Cell Dev Biol. 2024 Apr 22;12:1389012. doi: 10.3389/fcell.2024.1389012. eCollection 2024.

本文引用的文献

1
Liver-Kidney-on-Chip To Study Toxicity of Drug Metabolites.用于研究药物代谢物毒性的肝肾芯片
ACS Biomater Sci Eng. 2018 Jan 8;4(1):78-89. doi: 10.1021/acsbiomaterials.7b00417. Epub 2017 Dec 4.
8
Growth and Immune Evasion of Lymph Node Metastasis.淋巴结转移的生长与免疫逃逸
Front Oncol. 2018 Feb 21;8:36. doi: 10.3389/fonc.2018.00036. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验