Suppr超能文献

基于视觉的脑机接口机器人手臂控制系统及 2 例颈髓损伤患者的临床应用

Vision-aided brain-machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury.

机构信息

Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul, 08826, South Korea.

Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, South Korea.

出版信息

Biomed Eng Online. 2019 Feb 11;18(1):14. doi: 10.1186/s12938-019-0633-6.

Abstract

BACKGROUND

While spontaneous robotic arm control using motor imagery has been reported, most previous successful cases have used invasive approaches with advantages in spatial resolution. However, still many researchers continue to investigate methods for robotic arm control with noninvasive neural signal. Most of noninvasive control of robotic arm utilizes P300, steady state visually evoked potential, N2pc, and mental tasks differentiation. Even though these approaches demonstrated successful accuracy, they are limited in time efficiency and user intuition, and mostly require visual stimulation. Ultimately, velocity vector construction using electroencephalography activated by motion-related motor imagery can be considered as a substitution. In this study, a vision-aided brain-machine interface training system for robotic arm control is proposed and developed.

METHODS

The proposed system uses a Microsoft Kinect to detect and estimates the 3D positions of the possible target objects. The predicted velocity vector for robot arm input is compensated using the artificial potential to follow an intended one among the possible targets. Two participants with cervical spinal cord injury trained with the system to explore its possible effects.

RESULTS

In a situation with four possible targets, the proposed system significantly improved the distance error to the intended target compared to the unintended ones (p < 0.0001). Functional magnetic resonance imaging after five sessions of observation-based training with the developed system showed brain activation patterns with tendency of focusing to ipsilateral primary motor and sensory cortex, posterior parietal cortex, and contralateral cerebellum. However, shared control with blending parameter α less than 1 was not successful and success rate for touching an instructed target was less than the chance level (= 50%).

CONCLUSIONS

The pilot clinical study utilizing the training system suggested potential beneficial effects in characterizing the brain activation patterns.

摘要

背景

虽然已经有使用运动想象自发控制机器人手臂的报道,但大多数先前成功的案例都使用了具有更高空间分辨率的侵入性方法。然而,仍有许多研究人员继续研究使用非侵入性神经信号控制机器人手臂的方法。大多数非侵入性控制机器人手臂的方法都利用 P300、稳态视觉诱发电位、N2pc 和心理任务区分。尽管这些方法显示出了成功的准确性,但它们在时间效率和用户直觉方面存在限制,而且大多需要视觉刺激。最终,可以考虑使用运动相关运动想象激活的脑电图构建速度矢量来替代。在这项研究中,提出并开发了一种用于机器人手臂控制的基于视觉的脑机接口训练系统。

方法

所提出的系统使用 Microsoft Kinect 来检测和估计可能目标物体的 3D 位置。使用人工势场补偿机器人手臂输入的预测速度矢量,以跟随可能目标中的一个。两名颈脊髓损伤的参与者使用该系统进行训练,以探索其可能的效果。

结果

在有四个可能目标的情况下,与未指定的目标相比,该系统显著降低了到指定目标的距离误差(p < 0.0001)。使用所开发的系统进行五次观察性训练后进行功能性磁共振成像显示出大脑激活模式,倾向于聚焦到同侧初级运动和感觉皮层、后顶叶皮层和对侧小脑。然而,共享控制的混合参数α小于 1 并不成功,并且触到指定目标的成功率低于 50%的机会水平。

结论

利用该训练系统的初步临床研究表明,在描述大脑激活模式方面具有潜在的有益效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c31/6371594/21cb3c3a9b86/12938_2019_633_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验