Suppr超能文献

基于内源性 EEG 的动态设备控制脑机接口的综合评述

A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control.

机构信息

Centre for Biomedical Cybernetics, University of Malta, MSD 2080 Msida, Malta.

Department of Systems and Control Engineering, University of Malta, MSD 2080 Msida, Malta.

出版信息

Sensors (Basel). 2022 Aug 3;22(15):5802. doi: 10.3390/s22155802.

Abstract

Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important enabling technologies for people with severe mobility impairment. Endogenous paradigms, which depend on user-generated commands and do not need external stimuli, can provide intuitive control of external devices. This paper discusses BCIs to control various physical devices such as exoskeletons, wheelchairs, mobile robots, and robotic arms. These technologies must be able to navigate complex environments or execute fine motor movements. Brain control of these devices presents an intricate research problem that merges signal processing and classification techniques with control theory. In particular, obtaining strong classification performance for endogenous BCIs is challenging, and EEG decoder output signals can be unstable. These issues present myriad research questions that are discussed in this review paper. This review covers papers published until the end of 2021 that presented BCI-controlled dynamic devices. It discusses the devices controlled, EEG paradigms, shared control, stabilization of the EEG signal, traditional machine learning and deep learning techniques, and user experience. The paper concludes with a discussion of open questions and avenues for future work.

摘要

基于脑电图(EEG)的脑机接口(BCI)为控制外部设备提供了一种新方法。BCI 技术可以成为严重运动障碍患者的重要使能技术。内源性范式依赖于用户生成的命令,不需要外部刺激,可以提供对外部设备的直观控制。本文讨论了用于控制各种物理设备的 BCI,如外骨骼、轮椅、移动机器人和机械臂。这些技术必须能够在复杂环境中导航或执行精细运动。大脑对这些设备的控制提出了一个复杂的研究问题,它将信号处理和分类技术与控制理论相结合。特别是,对于内源性 BCI,获得强大的分类性能具有挑战性,并且 EEG 解码器输出信号可能不稳定。这些问题提出了许多研究问题,本文综述进行了讨论。本文综述涵盖了截至 2021 年底发表的、介绍 BCI 控制动态设备的论文。它讨论了所控制的设备、EEG 范式、共享控制、EEG 信号的稳定化、传统机器学习和深度学习技术以及用户体验。本文最后讨论了开放性问题和未来工作的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5d/9370865/516e91a86954/sensors-22-05802-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验