Suppr超能文献

基于基因表达和 DNA 甲基化数据整合分析鉴定帕金森病的潜在血液生物标志物。

Identification of potential blood biomarkers for Parkinson's disease by gene expression and DNA methylation data integration analysis.

机构信息

Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., Macau, China.

出版信息

Clin Epigenetics. 2019 Feb 11;11(1):24. doi: 10.1186/s13148-019-0621-5.

Abstract

BACKGROUND

Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible.

METHODS

Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5'-C-phosphate-G-3' (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data.

RESULTS

Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD.

CONCLUSIONS

Gene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD.

摘要

背景

帕金森病(PD)的基于血液的基因表达或表观遗传生物标志物非常理想。然而,需要提高准确性和特异性,并开发将基因表达与表观遗传数据集成的方法,以使这成为可能。

方法

从基因表达综合数据库(GEO)下载全血基因表达数据和 DNA 甲基化数据。根据特定基因区域 5'-C-磷酸-G-3'(CpG)或所有基因区域 CpG 在 PD 中的情况,线性模型用于识别差异表达基因(DEGs)和差异甲基化基因(DMGs)。然后对 DEGs 和 DMGs 进行基因集富集分析。随后,进行数据集成分析以识别稳健的 PD 相关血液生物标志物。最后,使用随机森林算法和留一法交叉验证方法,基于与甲基化数据集成的基因表达数据构建分类器。

结果

与健康对照组相比,在 PD 患者中鉴定出 85 个(85)明显低甲基化和上调的基因。这些基因的主要低甲基化区域明显不同。一些基因有一个单一的主要低甲基化区域,而其他基因有多个主要低甲基化区域。基于所有或主要甲基化改变区域 CpG 构建了一个基因表达分类器和两个基因甲基化分类器。所有分类器对 PD 均具有良好的预测能力。

结论

基因表达和甲基化数据集成分析确定了一个基于血液的 53 基因特征,可作为 PD 的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb8a/6371578/c2be207cc7f9/13148_2019_621_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验