Suppr超能文献

利用推特(Twitter)检测自认为患有自闭症谱系障碍者的心理特征:一项可行性研究。

Using Twitter to Detect Psychological Characteristics of Self-Identified Persons With Autism Spectrum Disorder: A Feasibility Study.

机构信息

Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, MA, United States.

Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, United States.

出版信息

JMIR Mhealth Uhealth. 2019 Feb 12;7(2):e12264. doi: 10.2196/12264.

Abstract

BACKGROUND

More than 3.5 million Americans live with autism spectrum disorder (ASD). Major challenges persist in diagnosing ASD as no medical test exists to diagnose this disorder. Digital phenotyping holds promise to guide in the clinical diagnoses and screening of ASD.

OBJECTIVE

This study aims to explore the feasibility of using the Web-based social media platform Twitter to detect psychological and behavioral characteristics of self-identified persons with ASD.

METHODS

Data from Twitter were retrieved from 152 self-identified users with ASD and 182 randomly selected control users from March 22, 2012 to July 20, 2017. We conducted a between-group comparative textual analysis of tweets about repetitive and obsessive-compulsive behavioral characteristics typically associated with ASD. In addition, common emotional characteristics of persons with ASD, such as fear, paranoia, and anxiety, were examined between groups through textual analysis. Furthermore, we compared the timing of tweets between users with ASD and control users to identify patterns in communication.

RESULTS

Users with ASD posted a significantly higher frequency of tweets related to the specific repetitive behavior of counting compared with control users (P<.001). The textual analysis of obsessive-compulsive behavioral characteristics, such as fixate, excessive, and concern, were significantly higher among users with ASD compared with the control group (P<.001). In addition, emotional terms related to fear, paranoia, and anxiety were tweeted at a significantly higher rate among users with ASD compared with control users (P<.001). Users with ASD posted a smaller proportion of tweets during time intervals of 00:00-05:59 (P<.001), 06:00-11:59 (P<.001), and 18:00-23.59 (P<.001), as well as a greater proportion of tweets from 12:00 to 17:59 (P<.001) compared with control users.

CONCLUSIONS

Social media may be a valuable resource for observing unique psychological characteristics of self-identified persons with ASD. Collecting and analyzing data from these digital platforms may afford opportunities to identify the characteristics of ASD and assist in the diagnosis or verification of ASD. This study highlights the feasibility of leveraging digital data for gaining new insights into various health conditions.

摘要

背景

超过 350 万美国人患有自闭症谱系障碍(ASD)。目前尚无医学检测方法可用于诊断这种疾病,因此在诊断 ASD 方面仍然存在重大挑战。数字表型有望为 ASD 的临床诊断和筛查提供指导。

目的

本研究旨在探索使用基于网络的社交媒体平台 Twitter 来检测自我认同的 ASD 患者的心理和行为特征的可行性。

方法

从 2012 年 3 月 22 日至 2017 年 7 月 20 日,从 152 名自我认同的 ASD 患者和 182 名随机选择的对照患者的 Twitter 数据中检索数据。我们对与 ASD 相关的重复和强迫性行为特征的推文进行了组间比较文本分析。此外,通过文本分析检查了 ASD 患者常见的情绪特征,如恐惧、偏执和焦虑。此外,我们比较了 ASD 患者和对照患者之间的推文时间,以确定沟通模式。

结果

与对照患者相比,ASD 患者发布的与特定重复行为计数相关的推文频率明显更高(P<.001)。与对照组相比,ASD 患者的强迫性行为特征(如固定、过度和关注)的文本分析明显更高(P<.001)。此外,与对照患者相比,ASD 患者发布的与恐惧、偏执和焦虑相关的情绪术语的频率明显更高(P<.001)。与对照患者相比,ASD 患者在 00:00-05:59(P<.001)、06:00-11:59(P<.001)和 18:00-23.59(P<.001)时间段以及 12:00-17:59(P<.001)时间段发布的推文比例较小,而在这些时间段发布的推文比例较大。

结论

社交媒体可能是观察自我认同的 ASD 患者独特心理特征的有价值资源。从这些数字平台收集和分析数据可能为识别 ASD 的特征并协助 ASD 的诊断或验证提供机会。本研究强调了利用数字数据为深入了解各种健康状况提供新见解的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验