Suppr超能文献

推特上语言使用的机器学习显示出预测能力较弱且缺乏特异性。

Machine learning of language use on Twitter reveals weak and non-specific predictions.

作者信息

Kelley Sean W, Mhaonaigh Caoimhe Ní, Burke Louise, Whelan Robert, Gillan Claire M

机构信息

School of Psychology, Trinity College Dublin, Dublin, Ireland.

Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.

出版信息

NPJ Digit Med. 2022 Mar 25;5(1):35. doi: 10.1038/s41746-022-00576-y.

Abstract

Depressed individuals use language differently than healthy controls and it has been proposed that social media posts can be used to identify depression. Much of the evidence behind this claim relies on indirect measures of mental health and few studies have tested if these language features are specific to depression versus other aspects of mental health. We analysed the Tweets of 1006 participants who completed questionnaires assessing symptoms of depression and 8 other mental health conditions. Daily Tweets were subjected to textual analysis and the resulting linguistic features were used to train an Elastic Net model on depression severity, using nested cross-validation. We then tested performance in a held-out test set (30%), comparing predictions of depression versus 8 other aspects of mental health. The depression trained model had modest out-of-sample predictive performance, explaining 2.5% of variance in depression symptoms (R = 0.025, r = 0.16). The performance of this model was as-good or superior when used to identify other aspects of mental health: schizotypy, social anxiety, eating disorders, generalised anxiety, above chance for obsessive-compulsive disorder, apathy, but not significant for alcohol abuse or impulsivity. Machine learning analysis of social media data, when trained on well-validated clinical instruments, could not make meaningful individualised predictions regarding users' mental health. Furthermore, language use associated with depression was non-specific, having similar performance in predicting other mental health problems.

摘要

抑郁症患者使用语言的方式与健康对照组不同,有人提出社交媒体帖子可用于识别抑郁症。这一说法背后的许多证据都依赖于心理健康的间接测量方法,很少有研究测试这些语言特征是否特定于抑郁症,而非心理健康的其他方面。我们分析了1006名参与者的推文,这些参与者完成了评估抑郁症状和其他8种心理健康状况的问卷。对每日推文进行文本分析,并使用所得的语言特征,通过嵌套交叉验证,训练一个关于抑郁严重程度的弹性网络模型。然后,我们在一个留出的测试集(30%)中测试模型性能,比较抑郁症预测结果与心理健康其他8个方面的预测结果。经过抑郁症训练的模型具有适度的样本外预测性能,可解释抑郁症状2.5%的方差(R = 0.025,r = 0.16)。当该模型用于识别心理健康的其他方面时,其性能相当或更优:精神分裂症型人格、社交焦虑、饮食失调、广泛性焦虑、对强迫症有高于随机水平的预测能力、冷漠,但对酒精滥用或冲动性预测不显著。在经过充分验证的临床工具上进行训练时,对社交媒体数据的机器学习分析无法对用户的心理健康做出有意义的个性化预测。此外,与抑郁症相关的语言使用并非特异性的,在预测其他心理健康问题时表现相似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验