Suppr超能文献

Twitter 用户中精神分裂症患者的抑郁和焦虑症的在线交流:使用社交媒体为数字表型提供信息的初步研究结果。

Online Communication about Depression and Anxiety among Twitter Users with Schizophrenia: Preliminary Findings to Inform a Digital Phenotype Using Social Media.

机构信息

Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.

Computational Epidemiology Group, Boston Children's Hospital, Boston, MA, USA.

出版信息

Psychiatr Q. 2018 Sep;89(3):569-580. doi: 10.1007/s11126-017-9559-y.

Abstract

Digital technologies hold promise for supporting the detection and management of schizophrenia. This exploratory study aimed to generate an initial understanding of whether patterns of communication about depression and anxiety on popular social media among individuals with schizophrenia are consistent with offline representations of the illness. From January to July 2016, posts on Twitter were collected from a sample of Twitter users who self-identify as having a schizophrenia spectrum disorder (n = 203) and a randomly selected sample of control users (n = 173). Frequency and timing of communication about depression and anxiety were compared between groups. In total, the groups posted n = 1,544,122 tweets and users had similar characteristics. Twitter users with schizophrenia showed significantly greater odds of tweeting about depression compared with control users (OR = 2.69; 95% CI 1.76-4.10), and significantly greater odds of tweeting about anxiety compared with control users (OR = 1.81; 95% CI 1.20-2.73). This study offers preliminary insights that Twitter users with schizophrenia may express elevated symptoms of depression and anxiety in their online posts, which is consistent with clinical characteristics of schizophrenia observed in offline settings. Social media platforms could further our understanding of schizophrenia by informing a digital phenotype and may afford new opportunities to support early illness detection.

摘要

数字技术有望支持精神分裂症的检测和管理。这项探索性研究旨在初步了解精神分裂症患者在社交媒体上发布的关于抑郁和焦虑的信息模式是否与线下对该疾病的描述一致。2016 年 1 月至 7 月,从自我诊断为精神分裂症谱系障碍的 Twitter 用户样本(n=203)和随机选择的对照用户样本(n=173)中收集了 Twitter 上的帖子。比较了两组人群关于抑郁和焦虑的沟通频率和时间。总共有两组共发布了 n=1544122 条推文,用户具有相似的特征。与对照组相比,精神分裂症患者在 Twitter 上发布抑郁相关内容的几率明显更高(OR=2.69;95%CI 1.76-4.10),发布焦虑相关内容的几率也明显更高(OR=1.81;95%CI 1.20-2.73)。这项研究提供了初步的见解,即精神分裂症患者在他们的在线帖子中可能表达了更高水平的抑郁和焦虑症状,这与线下观察到的精神分裂症的临床特征一致。社交媒体平台可以通过提供数字表型进一步加深我们对精神分裂症的了解,并为支持早期疾病检测提供新的机会。

相似文献

引用本文的文献

6

本文引用的文献

6
Social Media as a Sentinel for Disease Surveillance: What Does Sociodemographic Status Have to Do with It?社交媒体作为疾病监测的前哨:社会人口统计学状况与之有何关联?
PLoS Curr. 2016 Dec 7;8:ecurrents.outbreaks.cc09a42586e16dc7dd62813b7ee5d6b6. doi: 10.1371/currents.outbreaks.cc09a42586e16dc7dd62813b7ee5d6b6.
9
The future of mental health care: peer-to-peer support and social media.心理健康照护的未来:朋辈支持和社交媒体。
Epidemiol Psychiatr Sci. 2016 Apr;25(2):113-22. doi: 10.1017/S2045796015001067. Epub 2016 Jan 8.
10
Mining Twitter Data to Improve Detection of Schizophrenia.挖掘推特数据以改善精神分裂症的检测
AMIA Jt Summits Transl Sci Proc. 2015 Mar 25;2015:122-6. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验