Suppr超能文献

准周期模式有助于大脑的功能连接。

Quasi-periodic patterns contribute to functional connectivity in the brain.

机构信息

Neuroscience, Emory University, 1760 Haygood Dr NE Suite W-200, Atlanta, GA, 30322, USA.

Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.

出版信息

Neuroimage. 2019 May 1;191:193-204. doi: 10.1016/j.neuroimage.2019.01.076. Epub 2019 Feb 10.

Abstract

Functional connectivity is widely used to study the coordination of activity between brain regions over time. Functional connectivity in the default mode and task positive networks is particularly important for normal brain function. However, the processes that give rise to functional connectivity in the brain are not fully understood. It has been postulated that low-frequency neural activity plays a key role in establishing the functional architecture of the brain. Quasi-periodic patterns (QPPs) are a reliably observable form of low-frequency neural activity that involve the default mode and task positive networks. Here, QPPs from resting-state and working memory task-performing individuals were acquired. The spatiotemporal pattern, strength, and frequency of the QPPs between the two groups were compared and the contribution of QPPs to functional connectivity in the brain was measured. In task-performing individuals, the spatiotemporal pattern of the QPP changes, particularly in task-relevant regions, and the QPP tends to occur with greater strength and frequency. Differences in the QPPs between the two groups could partially account for the variance in functional connectivity between resting-state and task-performing individuals. The QPPs contribute strongly to connectivity in the default mode and task positive networks and to the strength of anti-correlation seen between the two networks. Many of the connections affected by QPPs are also disrupted during several neurological disorders. These findings contribute to understanding the dynamic neural processes that give rise to functional connectivity in the brain and how they may be disrupted during disease.

摘要

功能连接广泛用于研究大脑区域随时间的活动协调。默认模式和任务正网络中的功能连接对于正常的大脑功能尤为重要。然而,导致大脑中功能连接的过程尚未完全理解。有人假设低频神经活动在建立大脑的功能架构中起着关键作用。准周期模式(QPP)是一种可靠观察到的低频神经活动形式,涉及默认模式和任务正网络。在此,获取了来自静息状态和工作记忆任务执行个体的 QPP。比较了两组之间 QPP 的时空模式、强度和频率,并测量了 QPP 对大脑功能连接的贡献。在执行任务的个体中,QPP 的时空模式发生变化,特别是在与任务相关的区域,并且 QPP 往往以更大的强度和频率发生。两组之间 QPP 的差异可以部分解释静息状态和执行任务的个体之间功能连接的差异。QPP 强烈影响默认模式和任务正网络的连接,以及这两个网络之间观察到的反相关的强度。受 QPP 影响的许多连接也在几种神经疾病中受到干扰。这些发现有助于理解导致大脑中功能连接的动态神经过程,以及它们在疾病期间可能如何受到干扰。

相似文献

1
Quasi-periodic patterns contribute to functional connectivity in the brain.
Neuroimage. 2019 May 1;191:193-204. doi: 10.1016/j.neuroimage.2019.01.076. Epub 2019 Feb 10.
2
Quasi-periodic patterns of brain activity in individuals with attention-deficit/hyperactivity disorder.
Neuroimage Clin. 2019;21:101653. doi: 10.1016/j.nicl.2019.101653. Epub 2019 Jan 19.
3
Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal.
Neuroimage. 2018 Oct 15;180(Pt B):463-484. doi: 10.1016/j.neuroimage.2018.01.075. Epub 2018 Feb 15.
4
Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal.
Neuroimage. 2018 Feb 15;167:297-308. doi: 10.1016/j.neuroimage.2017.11.043. Epub 2017 Nov 22.
5
6
Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
Neuroimage. 2014 Jan 1;84:1018-31. doi: 10.1016/j.neuroimage.2013.09.029. Epub 2013 Sep 23.
7
Scale-invariant rearrangement of resting state networks in the human brain under sustained stimulation.
Neuroimage. 2018 Oct 1;179:570-581. doi: 10.1016/j.neuroimage.2018.06.006. Epub 2018 Jul 5.
8
Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics.
Front Neural Circuits. 2022 Apr 4;16:681544. doi: 10.3389/fncir.2022.681544. eCollection 2022.
9
Resting Brain Fluctuations Are Intrinsically Coupled to Visual Response Dynamics.
Cereb Cortex. 2021 Feb 5;31(3):1511-1522. doi: 10.1093/cercor/bhaa305.
10
Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
Neuropsychologia. 2018 Jun;114:50-64. doi: 10.1016/j.neuropsychologia.2018.04.013. Epub 2018 Apr 12.

引用本文的文献

1
The effects of locus coeruleus optogenetic stimulation on global spatiotemporal patterns in rats.
Imaging Neurosci (Camb). 2024 Oct 15;2. doi: 10.1162/imag_a_00314. eCollection 2024.
2
Synchronous high-amplitude co-fluctuations of functional brain networks during movie-watching.
Imaging Neurosci (Camb). 2023 Nov 7;1. doi: 10.1162/imag_a_00026. eCollection 2023.
3
Vasomotor fluctuations are increased in primary central nervous system lymphoma: a case-control study with fast functional MRI.
Brain Commun. 2025 Jul 8;7(4):fcaf262. doi: 10.1093/braincomms/fcaf262. eCollection 2025.
5
The history and future of resting-state functional magnetic resonance imaging.
Nature. 2025 May;641(8065):1121-1131. doi: 10.1038/s41586-025-08953-9. Epub 2025 May 28.
6
Altered functional connectivity and spatiotemporal dynamics in individuals with central disorders of hypersomnolence.
Front Neurosci. 2025 Mar 25;19:1538479. doi: 10.3389/fnins.2025.1538479. eCollection 2025.
9
Developmental Variations in Recurrent Spatiotemporal Brain Propagations from Childhood to Adulthood.
bioRxiv. 2025 Feb 5:2025.02.04.635765. doi: 10.1101/2025.02.04.635765.

本文引用的文献

1
Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal.
Neuroimage. 2018 Oct 15;180(Pt B):463-484. doi: 10.1016/j.neuroimage.2018.01.075. Epub 2018 Feb 15.
2
Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal.
Neuroimage. 2018 Feb 15;167:297-308. doi: 10.1016/j.neuroimage.2017.11.043. Epub 2017 Nov 22.
3
Infraslow Electroencephalographic and Dynamic Resting State Network Activity.
Brain Connect. 2017 Jun;7(5):265-280. doi: 10.1089/brain.2017.0492.
4
Towards a consensus regarding global signal regression for resting state functional connectivity MRI.
Neuroimage. 2017 Jul 1;154:169-173. doi: 10.1016/j.neuroimage.2016.11.052. Epub 2016 Nov 22.
5
Activity flow over resting-state networks shapes cognitive task activations.
Nat Neurosci. 2016 Dec;19(12):1718-1726. doi: 10.1038/nn.4406. Epub 2016 Oct 10.
7
The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
Cereb Cortex. 2016 Aug;26(8):3508-26. doi: 10.1093/cercor/bhw157. Epub 2016 May 26.
8
Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6556-61. doi: 10.1073/pnas.1521299113. Epub 2016 May 16.
9
Functional connectivity and network analysis of midbrain and brainstem nuclei.
Neuroimage. 2016 Jul 1;134:53-63. doi: 10.1016/j.neuroimage.2016.03.071. Epub 2016 Apr 1.
10
Spontaneous Neural Dynamics and Multi-scale Network Organization.
Front Syst Neurosci. 2016 Feb 9;10:7. doi: 10.3389/fnsys.2016.00007. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验