Suppr超能文献

通过机器学习和单分子超分辨率数据的图元分析鉴定窖蛋白-1 结构域特征。

Identification of caveolin-1 domain signatures via machine learning and graphlet analysis of single-molecule super-resolution data.

机构信息

Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.

Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.

出版信息

Bioinformatics. 2019 Sep 15;35(18):3468-3475. doi: 10.1093/bioinformatics/btz113.

Abstract

MOTIVATION

Network analysis and unsupervised machine learning processing of single-molecule localization microscopy of caveolin-1 (Cav1) antibody labeling of prostate cancer cells identified biosignatures and structures for caveolae and three distinct non-caveolar scaffolds (S1A, S1B and S2). To obtain further insight into low-level molecular interactions within these different structural domains, we now introduce graphlet decomposition over a range of proximity thresholds and show that frequency of different subgraph (k = 4 nodes) patterns for machine learning approaches (classification, identification, automatic labeling, etc.) effectively distinguishes caveolae and scaffold blobs.

RESULTS

Caveolae formation requires both Cav1 and the adaptor protein CAVIN1 (also called PTRF). As a supervised learning approach, we applied a wide-field CAVIN1/PTRF mask to CAVIN1/PTRF-transfected PC3 prostate cancer cells and used the random forest classifier to classify blobs based on graphlet frequency distribution (GFD). GFD of CAVIN1/PTRF-positive (PTRF+) and -negative Cav1 clusters showed poor classification accuracy that was significantly improved by stratifying the PTRF+ clusters by either number of localizations or volume. Low classification accuracy (<50%) of large PTRF+ clusters and caveolae blobs identified by unsupervised learning suggests that their GFD is specific to caveolae. High classification accuracy for small PTRF+ clusters and caveolae blobs argues that CAVIN1/PTRF associates not only with caveolae but also non-caveolar scaffolds. At low proximity thresholds (50-100 nm), the caveolae groups showed reduced frequency of highly connected graphlets and increased frequency of completely disconnected graphlets. GFD analysis of single-molecule localization microscopy Cav1 clusters defines changes in structural organization in caveolae and scaffolds independent of association with CAVIN1/PTRF.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

通过对前列腺癌细胞中 Cav1 抗体标记的单分子定位显微镜的网络分析和无监督机器学习处理,确定了质膜微囊(caveolae)和三种不同的非质膜微囊支架(S1A、S1B 和 S2)的生物标志物和结构。为了进一步了解这些不同结构域内的低水平分子相互作用,我们现在在一系列接近阈值上引入了图元分解,并表明不同子图(k=4 个节点)模式的频率对于机器学习方法(分类、识别、自动标记等)有效地区分质膜微囊和支架团块。

结果

质膜微囊的形成需要 Cav1 和衔接蛋白 CAVIN1(也称为 PTRF)。作为一种有监督的学习方法,我们将一个宽场 CAVIN1/PTRF 掩模应用于 CAVIN1/PTRF 转染的 PC3 前列腺癌细胞,并使用随机森林分类器根据图元频率分布(GFD)对团块进行分类。CAVIN1/PTRF 阳性(PTRF+)和 Cav1 阴性簇的 GFD 显示出较差的分类准确性,通过按局部位点数或体积对 PTRF+簇进行分层,可显著提高分类准确性。无监督学习中对大 PTRF+簇和质膜微囊的低分类准确性(<50%)表明其 GFD 是质膜微囊特有的。对小 PTRF+簇和质膜微囊的高分类准确性表明 CAVIN1/PTRF 不仅与质膜微囊而且与非质膜微囊支架相关。在低接近阈值(50-100nm)下,质膜微囊组显示出高度连接的图元频率降低和完全不连接的图元频率增加。质膜微囊和支架中 Cav1 团簇的单分子定位显微镜 GFD 分析定义了结构组织的变化,与 CAVIN1/PTRF 无关。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

8
Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease.眼部内稳态和疾病中的窖腔和非窖腔窖蛋白-1。
Prog Retin Eye Res. 2022 Nov;91:101094. doi: 10.1016/j.preteyeres.2022.101094. Epub 2022 Jun 18.

引用本文的文献

6
Caveolae as Potential Hijackable Gates in Cell Communication.小窝作为细胞通讯中潜在的可劫持通道
Front Cell Dev Biol. 2020 Oct 27;8:581732. doi: 10.3389/fcell.2020.581732. eCollection 2020.

本文引用的文献

2
Local Higher-Order Graph Clustering.局部高阶图聚类
KDD. 2017 Aug;2017:555-564. doi: 10.1145/3097983.3098069.
3
Predicting multicellular function through multi-layer tissue networks.通过多层组织网络预测多细胞功能。
Bioinformatics. 2017 Jul 15;33(14):i190-i198. doi: 10.1093/bioinformatics/btx252.
4
Network neuroscience.网络神经科学
Nat Neurosci. 2017 Feb 23;20(3):353-364. doi: 10.1038/nn.4502.
6
Higher-order organization of complex networks.复杂网络的高阶组织
Science. 2016 Jul 8;353(6295):163-6. doi: 10.1126/science.aad9029.
7
Architecture of the caveolar coat complex.小窝衣被复合体的结构
J Cell Sci. 2016 Aug 15;129(16):3077-83. doi: 10.1242/jcs.191262. Epub 2016 Jul 1.
8
Structural network analysis of brain development in young preterm neonates.脑发育过程中早产儿的结构网络分析。
Neuroimage. 2014 Nov 1;101:667-80. doi: 10.1016/j.neuroimage.2014.07.030. Epub 2014 Jul 27.
9
A combinatorial approach to graphlet counting.图元计数的组合方法。
Bioinformatics. 2014 Feb 15;30(4):559-65. doi: 10.1093/bioinformatics/btt717. Epub 2013 Dec 11.
10
Discovering discriminative graphlets for aerial image categories recognition.发现有判别力的图元以识别航空图像类别。
IEEE Trans Image Process. 2013 Dec;22(12):5071-84. doi: 10.1109/TIP.2013.2278465. Epub 2013 Aug 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验