Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
Sci Rep. 2019 Jul 8;9(1):9888. doi: 10.1038/s41598-019-46174-z.
Caveolin-1 (Cav1), the coat protein for caveolae, also forms non-caveolar Cav1 scaffolds. Single molecule Cav1 super-resolution microscopy analysis previously identified caveolae and three distinct scaffold domains: smaller S1A and S2B scaffolds and larger hemispherical S2 scaffolds. Application here of network modularity analysis of SMLM data for endogenous Cav1 labeling in HeLa cells shows that small scaffolds combine to form larger scaffolds and caveolae. We find modules within Cav1 blobs by maximizing the intra-connectivity between Cav1 molecules within a module and minimizing the inter-connectivity between Cav1 molecules across modules, which is achieved via spectral decomposition of the localizations adjacency matrix. Features of modules are then matched with intact blobs to find the similarity between the module-blob pairs of group centers. Our results show that smaller S1A and S1B scaffolds are made up of small polygons, that S1B scaffolds correspond to S1A scaffold dimers and that caveolae and hemispherical S2 scaffolds are complex, modular structures formed from S1B and S1A scaffolds, respectively. Polyhedral interactions of Cav1 oligomers, therefore, leads progressively to the formation of larger and more complex scaffold domains and the biogenesis of caveolae.
窖蛋白-1(Cav1)是质膜微囊的衣壳蛋白,也形成非微囊的 Cav1 支架。单分子 Cav1 超分辨率显微镜分析先前鉴定了微囊和三个不同的支架结构域:较小的 S1A 和 S2B 支架以及较大的半球形 S2 支架。本研究应用 SMLM 数据分析网络模块性,对 HeLa 细胞中的内源性 Cav1 标记进行分析,结果表明小支架组合形成大支架和微囊。我们通过最大化模块内 Cav1 分子之间的内连接性和最小化模块间 Cav1 分子之间的外连接性,在 Cav1 斑点中找到模块,这是通过局部化邻接矩阵的谱分解来实现的。然后将模块的特征与完整的斑点进行匹配,以找到组中心的模块-斑点对之间的相似性。我们的结果表明,较小的 S1A 和 S1B 支架由小多边形组成,S1B 支架对应于 S1A 支架二聚体,而微囊和半球形 S2 支架是由 S1B 和 S1A 支架分别形成的复杂、模块化结构。因此,Cav1 低聚物的多面体相互作用导致较大和更复杂的支架结构域的形成以及微囊的生物发生。