Li Yahongyang Lydia, Khater Ismail M, Hallgrimson Christian, Cardoen Ben, Wong Timothy H, Hamarneh Ghassan, Nabi Ivan R
Department of Cellular and Physiological Sciences, Life Sciences Institute University of British Columbia Vancouver BC V6T 1Z3 Canada.
School of Computing Science Simon Fraser University Burnaby BC V5A 1S6 Canada.
Adv Intell Syst. 2025 Mar;7(3):2400521. doi: 10.1002/aisy.202400521. Epub 2024 Dec 25.
SuperResNET is an integrated machine learning-based analysis software for visualizing and quantifying 3D point cloud data acquired by single-molecule localization microscopy (SMLM). SuperResNET computational modules include correction for multiple blinking of single fluorophores, denoising, segmentation (clustering), feature extraction used for cluster group identification, modularity analysis, blob retrieval, and visualization in 2D and 3D. Here, a graphical user interface version of SuperResNET was applied to publicly available direct stochastic optical reconstruction microscopy (dSTORM) data of nucleoporin Nup96 and Nup107 labeled nuclear pores that present a highly organized octagon structure of eight corners. SuperResNET effectively segments nuclear pores and Nup96 corners based on differential proximity threshold analysis from 2D and 3D SMLM datasets. SuperResNET quantitatively analyzes features from segmented nuclear pores, including complete structures with eightfold symmetry, and from segmented corners. SuperResNET modularity analysis of segmented corners from 2D SMLM distinguishes two modules at 10.7 ± 0.1 nm distance, corresponding to two individual Nup96 molecules. SuperResNET is therefore a model-free tool that can reconstruct network architecture and molecular distribution of subcellular structures without the bias of a specified prior model, attaining molecular resolution from dSTORM data. SuperResNET provides flexibility to report on structural diversity in situ within the cell, providing opportunities for biological discovery.
SuperResNET是一款基于机器学习的集成分析软件,用于可视化和量化通过单分子定位显微镜(SMLM)获取的3D点云数据。SuperResNET计算模块包括对单个荧光团多次闪烁的校正、去噪、分割(聚类)、用于聚类组识别的特征提取、模块性分析、斑点检索以及二维和三维可视化。在此,SuperResNET的图形用户界面版本被应用于公开可用的直接随机光学重建显微镜(dSTORM)数据,这些数据是关于核孔蛋白Nup96和Nup107标记的核孔,呈现出具有八个角的高度有组织的八边形结构。SuperResNET基于二维和三维SMLM数据集的差分接近阈值分析,有效地分割核孔和Nup96角。SuperResNET定量分析来自分割后的核孔的特征,包括具有八重对称性的完整结构,以及来自分割后的角的特征。对二维SMLM分割后的角进行的SuperResNET模块性分析在10.7±0.1nm的距离处区分出两个模块,对应于两个单独的Nup96分子。因此,SuperResNET是一种无模型工具,它可以重建亚细胞结构的网络架构和分子分布,而不会受到指定先验模型的偏差影响,从dSTORM数据中获得分子分辨率。SuperResNET为报告细胞内原位的结构多样性提供了灵活性,为生物学发现提供了机会。