Suppr超能文献

SuperResNET:无模型单分子网络分析软件实现了Nup96的分子分辨率。

SuperResNET: Model-Free Single-Molecule Network Analysis Software Achieves Molecular Resolution of Nup96.

作者信息

Li Yahongyang Lydia, Khater Ismail M, Hallgrimson Christian, Cardoen Ben, Wong Timothy H, Hamarneh Ghassan, Nabi Ivan R

机构信息

Department of Cellular and Physiological Sciences, Life Sciences Institute University of British Columbia Vancouver BC V6T 1Z3 Canada.

School of Computing Science Simon Fraser University Burnaby BC V5A 1S6 Canada.

出版信息

Adv Intell Syst. 2025 Mar;7(3):2400521. doi: 10.1002/aisy.202400521. Epub 2024 Dec 25.

Abstract

SuperResNET is an integrated machine learning-based analysis software for visualizing and quantifying 3D point cloud data acquired by single-molecule localization microscopy (SMLM). SuperResNET computational modules include correction for multiple blinking of single fluorophores, denoising, segmentation (clustering), feature extraction used for cluster group identification, modularity analysis, blob retrieval, and visualization in 2D and 3D. Here, a graphical user interface version of SuperResNET was applied to publicly available direct stochastic optical reconstruction microscopy (dSTORM) data of nucleoporin Nup96 and Nup107 labeled nuclear pores that present a highly organized octagon structure of eight corners. SuperResNET effectively segments nuclear pores and Nup96 corners based on differential proximity threshold analysis from 2D and 3D SMLM datasets. SuperResNET quantitatively analyzes features from segmented nuclear pores, including complete structures with eightfold symmetry, and from segmented corners. SuperResNET modularity analysis of segmented corners from 2D SMLM distinguishes two modules at 10.7 ± 0.1 nm distance, corresponding to two individual Nup96 molecules. SuperResNET is therefore a model-free tool that can reconstruct network architecture and molecular distribution of subcellular structures without the bias of a specified prior model, attaining molecular resolution from dSTORM data. SuperResNET provides flexibility to report on structural diversity in situ within the cell, providing opportunities for biological discovery.

摘要

SuperResNET是一款基于机器学习的集成分析软件,用于可视化和量化通过单分子定位显微镜(SMLM)获取的3D点云数据。SuperResNET计算模块包括对单个荧光团多次闪烁的校正、去噪、分割(聚类)、用于聚类组识别的特征提取、模块性分析、斑点检索以及二维和三维可视化。在此,SuperResNET的图形用户界面版本被应用于公开可用的直接随机光学重建显微镜(dSTORM)数据,这些数据是关于核孔蛋白Nup96和Nup107标记的核孔,呈现出具有八个角的高度有组织的八边形结构。SuperResNET基于二维和三维SMLM数据集的差分接近阈值分析,有效地分割核孔和Nup96角。SuperResNET定量分析来自分割后的核孔的特征,包括具有八重对称性的完整结构,以及来自分割后的角的特征。对二维SMLM分割后的角进行的SuperResNET模块性分析在10.7±0.1nm的距离处区分出两个模块,对应于两个单独的Nup96分子。因此,SuperResNET是一种无模型工具,它可以重建亚细胞结构的网络架构和分子分布,而不会受到指定先验模型的偏差影响,从dSTORM数据中获得分子分辨率。SuperResNET为报告细胞内原位的结构多样性提供了灵活性,为生物学发现提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cad/12291151/4394034f15b1/AISY-7-0-g003.jpg

相似文献

1
SuperResNET: Model-Free Single-Molecule Network Analysis Software Achieves Molecular Resolution of Nup96.
Adv Intell Syst. 2025 Mar;7(3):2400521. doi: 10.1002/aisy.202400521. Epub 2024 Dec 25.
2
Error-Correction Method for High-Throughput Sizing of Nanoscale Vesicles with Single-Molecule Localization Microscopy.
J Phys Chem B. 2023 Mar 30;127(12):2701-2707. doi: 10.1021/acs.jpcb.2c09053. Epub 2023 Mar 21.
4
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
10
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.

本文引用的文献

1
Ångström-resolution fluorescence microscopy.
Nature. 2023 May;617(7962):711-716. doi: 10.1038/s41586-023-05925-9. Epub 2023 May 24.
2
Recent development of computational cluster analysis methods for single-molecule localization microscopy images.
Comput Struct Biotechnol J. 2023 Jan 9;21:879-888. doi: 10.1016/j.csbj.2023.01.006. eCollection 2023.
3
Joint registration of multiple point clouds for fast particle fusion in localization microscopy.
Bioinformatics. 2022 Jun 13;38(12):3281-3287. doi: 10.1093/bioinformatics/btac320.
4
Correction of multiple-blinking artifacts in photoactivated localization microscopy.
Nat Methods. 2022 May;19(5):594-602. doi: 10.1038/s41592-022-01463-w. Epub 2022 May 11.
5
Super-Resolution Microscopy for Structural Cell Biology.
Annu Rev Biophys. 2022 May 9;51:301-326. doi: 10.1146/annurev-biophys-102521-112912. Epub 2022 Feb 4.
6
3D particle averaging and detection of macromolecular symmetry in localization microscopy.
Nat Commun. 2021 May 14;12(1):2847. doi: 10.1038/s41467-021-22006-5.
8
9
MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells.
Nat Methods. 2020 Feb;17(2):217-224. doi: 10.1038/s41592-019-0688-0. Epub 2020 Jan 13.
10
Nuclear pores as versatile reference standards for quantitative superresolution microscopy.
Nat Methods. 2019 Oct;16(10):1045-1053. doi: 10.1038/s41592-019-0574-9. Epub 2019 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验