a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.
b Faculty of Mathematics and Natural Sciences, Department of Biosciences , University of Oslo , Oslo , Norway.
Nanotoxicology. 2019 Aug;13(6):761-782. doi: 10.1080/17435390.2019.1576238. Epub 2019 Feb 14.
For optimal exploitation of nanoparticles (NPs) in biomedicine, and to predict nanotoxicity, detailed knowledge of the cellular responses to cell-bound or internalized NPs is imperative. The final outcome of NP-cell interaction is dictated by the type and magnitude of the NP insult and the cellular response. Here, this has been systematically studied by using poly(alkylcyanoacrylate) (PACA) particles differing only in their alkyl side chains; butyl (PBCA), ethylbutyl (PEBCA), or octyl (POCA), respectively. Surprisingly, these highly similar NPs induced different stress responses and modes of cell death in human cell lines. The POCA particles generally induced endoplasmic reticulum stress and apoptosis. In contrast, PBCA and PEBCA particles induced oxidative stress and lipid peroxidation depending on the level of the glutathione precursor cystine and transcription of the cystine transporter . The latter was induced as a protective response by the transcription factors ATF4 and Nrf2. PBCA particles strongly activated ATF4 downstream of the eIF2α kinase HRI, whereas PEBCA particles more potently induced Nrf2 antioxidant responses. Intriguingly, PBCA particles activated the cell death mechanism ferroptosis; a promising option for targeting multidrug-resistant cancers. Our findings highlight that even minor differences in NP composition can severely impact the cellular response to NPs. This may have important implications in therapeutic settings.
为了在生物医药中优化纳米粒子(NPs)的利用,并预测纳米毒性,详细了解细胞对细胞结合或内化 NPs 的反应是至关重要的。NP 与细胞相互作用的最终结果取决于 NP 损伤的类型和程度以及细胞反应。在这里,通过使用仅在烷基侧链上有所不同的聚(烷基氰基丙烯酸酯)(PACA)颗粒,系统地研究了这一点;分别为丁基(PBCA)、乙基丁基(PEBCA)或辛基(POCA)。令人惊讶的是,这些高度相似的 NPs 在人细胞系中诱导了不同的应激反应和细胞死亡模式。POCA 颗粒通常会诱导内质网应激和细胞凋亡。相比之下,PBCA 和 PEBCA 颗粒会根据谷胱甘肽前体半胱氨酸的水平和胱氨酸转运体的转录诱导氧化应激和脂质过氧化 。后者作为转录因子 ATF4 和 Nrf2 的保护反应而被诱导。PBCA 颗粒强烈激活了 eIF2α 激酶 HRI 下游的 ATF4,而 PEBCA 颗粒更有效地诱导了 Nrf2 抗氧化反应。有趣的是,PBCA 颗粒激活了细胞死亡机制铁死亡;这是靶向多药耐药癌症的有前途的选择。我们的研究结果表明,即使 NPs 组成中的微小差异也会严重影响细胞对 NPs 的反应。这在治疗环境中可能具有重要意义。