Suppr超能文献

基于 CRISPR 的基因调控系统在 中的实现。

Implementation of a CRISPR-Based System for Gene Regulation in .

机构信息

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid, Spain.

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid, Spain

出版信息

mSphere. 2019 Feb 13;4(1):e00001-19. doi: 10.1128/mSphere.00001-19.

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR) methodology is not only an efficient tool in gene editing but also an attractive platform to facilitate DNA, RNA, and protein interactions. We describe here the implementation of a CRISPR-based system to regulate expression in the clinically important yeast By fusing an allele of Cas9 devoid of nuclease activity to a transcriptional repressor (Nrg1) or activator (Gal4), we were able to show specific repression or activation of the tester gene , encoding the cytosolic catalase. We generated strains where a 1.6-kbp upstream regulatory region of controls the expression of the green fluorescent protein (GFP) and demonstrated the functionality of the constructs by quantitative PCR (qPCR), flow cytometry, and analysis of sensitivity/resistance to hydrogen peroxide. Activation and repression were strongly dependent on the position of the complex in this regulatory region. We also improved transcriptional activation using an RNA scaffolding strategy to allow interaction of inactive variants of Cas9 (dCas9) with the RNA binding protein MCP (monocyte chemoattractant protein) fused to the VP64 activator. The strategy shown here may facilitate the analysis of complex regulatory traits in this fungal pathogen. CRISPR technology is a new and efficient way to edit genomes, but it is also an appealing way to regulate gene expression. We have implemented CRISPR as a gene expression platform in using fusions between a Cas9 inactive enzyme and specific repressors or activators and demonstrated its functionality. This will allow future manipulation of complex virulence pathways in this important fungal pathogen.

摘要

成簇规律间隔短回文重复(CRISPR)方法不仅是基因编辑的有效工具,也是促进 DNA、RNA 和蛋白质相互作用的有吸引力的平台。我们在这里描述了一种基于 CRISPR 的系统在临床上重要的酵母中的应用,该系统可以调节表达。通过将无核酸酶活性的 Cas9 等位基因融合到转录抑制剂(Nrg1)或激活剂(Gal4)中,我们能够特异性地抑制或激活编码胞质过氧化氢酶的测试基因。我们生成了一种菌株,其中 的 1.6kbp 上游调控区控制绿色荧光蛋白(GFP)的表达,并通过定量 PCR(qPCR)、流式细胞术和对过氧化氢的敏感性/抗性分析来证明构建体的功能。激活和抑制强烈依赖于复合物在该调控区的位置。我们还通过使用 RNA 支架策略来提高转录激活,该策略允许与 RNA 结合蛋白 MCP(单核细胞趋化蛋白)融合的失活 Cas9(dCas9)变体相互作用,MCP 融合了 VP64 激活剂。这里展示的策略可能有助于分析这种真菌病原体中复杂的调控特征。CRISPR 技术是编辑基因组的一种新的有效方法,但它也是调节基因表达的一种有吸引力的方法。我们已经在 中实现了 CRISPR 作为基因表达平台,方法是将无活性的 Cas9 酶与特定的抑制剂或激活剂融合,并证明了其功能。这将允许在这种重要的真菌病原体中对复杂的毒力途径进行未来的操作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验