Piquero-Zulaica Ignacio, Garcia-Lekue Aran, Colazzo Luciano, Krug Claudio K, Mohammed Mohammed S G, Abd El-Fattah Zakaria M, Gottfried J Michael, de Oteyza Dimas G, Ortega J Enrique, Lobo-Checa Jorge
Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , Paseo Manuel de Lardizabal 5 , E-20018 San Sebastián , Spain.
Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4 , E-20018 Donostia-San Sebastián , Spain.
ACS Nano. 2018 Oct 23;12(10):10537-10544. doi: 10.1021/acsnano.8b06536. Epub 2018 Oct 12.
Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this "dry" chemistry to introduce topological variations in a conjugated poly( para-phenylene) chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unraveled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the band gap is tunable by altering the linear segment's length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled quantum dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.
设计具有独特前沿轨道的分子有机半导体是开发具有理想性能器件的关键。通过表面合成可以实现具有原子精度的明确有机纳米结构的生成。我们利用这种“干法”化学以间位连接的形式在共轭聚对亚苯基链中引入拓扑变化。正如STM和LEED所证明的那样,我们在邻位银晶体上制备了宏观有序的单层锯齿形链薄膜。这些交叉共轭纳米结构预计会表现出改变的电子性质,现在通过高度互补的实验技术(ARPES和STS)和理论计算(DFT和EPWE)得以揭示。我们发现间位连接主导了弱色散能带结构,而带隙可通过改变线性段的长度来调节。这些周期性拓扑效应导致相邻线性段之间的电子耦合显著损失,从而以弱耦合量子点的形式导致部分电子限制。这种周期性量子干涉效应决定了链的整体半导体特性和功能。