Condensed Matter Physics and Materials Science Department , Brookhaven National Laboratory , Upton , New York 11973 , United States.
Department of Materials Science and Engineering, NUANCE/BioCryo , Northwestern University , Evanston , Illinois 60208 , United States.
ACS Nano. 2019 Mar 26;13(3):3151-3161. doi: 10.1021/acsnano.8b08668. Epub 2019 Feb 25.
Tooth enamel is a hard yet resilient biomaterial that derives its unique mechanical properties from decussating bundles of apatite crystals. To understand enamel crystal nucleation and growth at a nanoscale level and to minimize preparation artifacts, the developing mouse enamel matrix was imaged in situ using graphene liquid cells and atomic resolution scanning transmission electron and cryo-fracture electron microscopy. We report that 1-2 nm diameter mineral precipitates aggregated to form larger 5 nm particle assemblies within ameloblast secretory vesicles or annular organic matrix subunits. Further evidence for the fusion of 1-2 nm mineral precipitates into 5 nm mineral aggregates via particle attachment was provided by matrix-mediated calcium phosphate crystal growth studies. As a next step, aggregated particles organized into rows of 3-10 subunits and developed lattice suprastructures with 0.34 nm gridline spacings corresponding to the (002) planes of apatite crystals. Mineral lattice suprastructures superseded closely matched organic matrix patterns, suggestive of a combination of organic/inorganic templates guiding apatite crystal growth. Upon assembly of 2-5 nm subunits into crystal ribbons, lattice fringes indicative of the presence of larger ordered crystallites were observed surrounding elongating crystal ribbons, presumably guiding the c-axis growth of composite apatite crystals. Cryo-fracture micrographs revealed reticular networks of an organic matrix on the surface of elongating enamel crystal ribbons, suggesting that protein coats facilitate c-axis apatite crystal growth. Together, these data demonstrate (i) the involvement of particle attachment in enamel crystal nucleation, (ii) a combination of matrix- and lattice-guided crystal growth, and (iii) fusion of individual crystals via a mechanism similar to Ostwald ripening.
牙釉质是一种坚硬而有弹性的生物材料,其独特的机械性能源于交错的磷灰石晶体束。为了在纳米尺度上理解牙釉质晶体的成核和生长,并最大程度地减少制备伪影,我们使用石墨烯液相池和原子分辨率扫描透射电子显微镜和冷冻断裂电子显微镜对发育中的小鼠牙釉质基质进行了原位成像。我们报告说,1-2nm 直径的矿物沉淀物聚集在一起,在成釉细胞的分泌小泡或环形有机基质亚单位内形成更大的 5nm 颗粒组装体。通过基质介导的磷酸钙晶体生长研究,提供了进一步的证据表明 1-2nm 矿物沉淀物通过颗粒附着融合成 5nm 矿物聚集体。下一步,聚集的颗粒排列成 3-10 个亚单位的行,并形成晶格超结构,具有 0.34nm 的网格线间距,对应于磷灰石晶体的(002)面。矿物晶格超结构取代了紧密匹配的有机基质图案,表明有机/无机模板的结合指导了磷灰石晶体的生长。在 2-5nm 亚单位组装成晶体带后,观察到围绕伸长的晶体带的晶格条纹,表明存在更大的有序晶体,可能指导复合磷灰石晶体的 c 轴生长。冷冻断裂显微照片显示在伸长的牙釉质晶体带表面存在有机基质的网状网络,表明蛋白质涂层有助于 c 轴磷灰石晶体的生长。总之,这些数据表明:(i)颗粒附着参与牙釉质晶体成核;(ii)基质和晶格引导晶体生长的结合;(iii)通过类似于奥斯特瓦尔德熟化的机制融合单个晶体。