Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.
Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.
J Phys Chem B. 2019 Mar 7;123(9):2016-2021. doi: 10.1021/acs.jpcb.9b00072. Epub 2019 Feb 27.
Many biomaterials can adapt to changes in the local biological environment (such as pH, temperature, or ionic composition) in order to regulate function or deliver a payload. Such adaptation to environmental perturbation is typically a hierarchical process that begins with a response at a local structural level and then propagates to supramolecular and macromolecular scales. Understanding fast structural dynamics that occur upon perturbation is important for rational design of functional biomaterials. However, few nanosecond time-resolved methods can probe both intra- and intermolecular scales simultaneously with a high structural resolution. Here, we utilize time-resolved X-ray scattering to probe nanosecond to microsecond structural dynamics of poly-l-glutamic acid undergoing protonation via a pH jump initiated by photoexcitation of a photoacid. Our results provide insights into the protonation-induced hierarchical changes in packing of peptide chains, formation of a helical structure, and the associated collapse of the peptide chain.
许多生物材料可以适应局部生物环境(如 pH 值、温度或离子组成)的变化,从而调节功能或输送有效载荷。这种对环境干扰的适应通常是一个层次化的过程,从局部结构水平的响应开始,然后传播到超分子和大分子尺度。了解扰动后发生的快速结构动力学对于功能生物材料的合理设计很重要。然而,很少有纳秒时间分辨方法可以同时以高结构分辨率探测分子内和分子间尺度。在这里,我们利用时间分辨 X 射线散射来探测通过光酸光激发引发的 pH 跃变进行质子化的聚谷氨酸的纳秒到微秒结构动力学。我们的结果提供了对质子化诱导的肽链堆积、螺旋结构形成和相关肽链坍塌的分级变化的深入了解。