Suppr超能文献

病毒组多样性与成人同卵双胞胎肠道微生物组多样性相关。

Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins.

机构信息

Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Cell Host Microbe. 2019 Feb 13;25(2):261-272.e5. doi: 10.1016/j.chom.2019.01.019.

Abstract

The virome is one of the most variable components of the human gut microbiome. Within twin pairs, viromes have been shown to be similar for infants, but not for adults, indicating that as twins age and their environments and microbiomes diverge, so do their viromes. The degree to which the microbiome drives the vast virome diversity is unclear. Here, we examine the relationship between microbiome and virome diversity in 21 adult monozygotic twin pairs selected for high or low microbiome concordance. Viromes derived from virus-like particles are unique to each individual, are dominated by Caudovirales and Microviridae, and exhibit a small core that includes crAssphage. Microbiome-discordant twins display more dissimilar viromes compared to microbiome-concordant twins, and the richer the microbiomes, the richer the viromes. These patterns are driven by bacteriophages, not eukaryotic viruses. Collectively, these observations support a strong role of the microbiome in patterning for the virome.

摘要

病毒组是人类肠道微生物组中最具变异性的组成部分之一。在双胞胎中,婴儿的病毒组相似,但成人的病毒组却不相似,这表明随着双胞胎年龄的增长,他们的环境和微生物组发生了分歧,病毒组也随之发生了变化。微生物组对巨大的病毒组多样性的影响程度尚不清楚。在这里,我们研究了 21 对选择高或低微生物组一致性的成年同卵双胞胎的微生物组和病毒组多样性之间的关系。源自病毒样颗粒的病毒组是每个人独有的,主要由长尾噬菌体目和微病毒科组成,并且具有包括 crAssphage 在内的小核心。与微生物组一致的双胞胎相比,微生物组不一致的双胞胎的病毒组差异更大,而微生物组越丰富,病毒组就越丰富。这些模式是由噬菌体驱动的,而不是真核病毒。总的来说,这些观察结果支持了微生物组在病毒组模式形成中起着重要作用。

相似文献

1
Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins.
Cell Host Microbe. 2019 Feb 13;25(2):261-272.e5. doi: 10.1016/j.chom.2019.01.019.
2
Viruses in the faecal microbiota of monozygotic twins and their mothers.
Nature. 2010 Jul 15;466(7304):334-8. doi: 10.1038/nature09199.
3
Discordant transmission of bacteria and viruses from mothers to babies at birth.
Microbiome. 2019 Dec 10;7(1):156. doi: 10.1186/s40168-019-0766-7.
4
A core gut microbiome in obese and lean twins.
Nature. 2009 Jan 22;457(7228):480-4. doi: 10.1038/nature07540. Epub 2008 Nov 30.
6
Enteric Virome and Bacterial Microbiota in Children With Ulcerative Colitis and Crohn Disease.
J Pediatr Gastroenterol Nutr. 2019 Jan;68(1):30-36. doi: 10.1097/MPG.0000000000002140.
7
Effects of Different Feeding Patterns on the Gut Virome of 6-Month-Old Infants.
J Med Virol. 2025 Apr;97(4):e70344. doi: 10.1002/jmv.70344.
8
Gut DNA viromes of Malawian twins discordant for severe acute malnutrition.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11941-6. doi: 10.1073/pnas.1514285112. Epub 2015 Sep 8.
9
Global phylogeography and ancient evolution of the widespread human gut virus crAssphage.
Nat Microbiol. 2019 Oct;4(10):1727-1736. doi: 10.1038/s41564-019-0494-6. Epub 2019 Jul 8.

引用本文的文献

2
The colonic mucosal virome in inflammatory bowel disease reveals Crassvirales depletion and disease-specific virome features.
Gut Microbes. 2025 Dec;17(1):2539450. doi: 10.1080/19490976.2025.2539450. Epub 2025 Aug 3.
3
The prototypic crAssphage is a linear phage-plasmid.
Cell Host Microbe. 2025 Aug 13;33(8):1347-1362.e5. doi: 10.1016/j.chom.2025.07.004. Epub 2025 Jul 28.
4
Identification of bacteriophage DNA in human umbilical cord blood.
JCI Insight. 2025 Jul 8;10(13). doi: 10.1172/jci.insight.183123.
5
Viewing Psychiatric Disorders Through Viruses: Simple Architecture, Burgeoning Implications.
Neurosci Bull. 2025 Sep;41(9):1669-1688. doi: 10.1007/s12264-025-01443-y. Epub 2025 Jul 7.
6
Gut virome: New key players in the pathogenesis of inflammatory bowel disease.
World J Methodol. 2025 Jun 20;15(2):92592. doi: 10.5662/wjm.v15.i2.92592.
7
A bacteriophage-conditional mouse model reveals the impact of phages within a conventionally colonized gut microbiota.
Cell Host Microbe. 2025 May 14;33(5):745-758.e6. doi: 10.1016/j.chom.2025.04.002. Epub 2025 Apr 28.
9
Improving gut virome comparisons using predicted phage host information.
mSystems. 2025 May 20;10(5):e0136424. doi: 10.1128/msystems.01364-24. Epub 2025 Apr 8.
10
Effects of bacteriophages on gut microbiome functionality.
Gut Microbes. 2025 Dec;17(1):2481178. doi: 10.1080/19490976.2025.2481178. Epub 2025 Mar 31.

本文引用的文献

1
The human gut virome: form and function.
Emerg Top Life Sci. 2017 Nov 30;1(4):351-362. doi: 10.1042/ETLS20170039.
3
A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments.
ISME J. 2018 Jun;12(7):1706-1714. doi: 10.1038/s41396-018-0071-7. Epub 2018 Feb 21.
4
MVP: a microbe-phage interaction database.
Nucleic Acids Res. 2018 Jan 4;46(D1):D700-D707. doi: 10.1093/nar/gkx1124.
5
Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut.
Nat Microbiol. 2018 Jan;3(1):38-46. doi: 10.1038/s41564-017-0053-y. Epub 2017 Nov 13.
7
The Human Gut Phage Community and Its Implications for Health and Disease.
Viruses. 2017 Jun 8;9(6):141. doi: 10.3390/v9060141.
8
Transposable phages, DNA reorganization and transfer.
Curr Opin Microbiol. 2017 Aug;38:88-94. doi: 10.1016/j.mib.2017.04.009. Epub 2017 May 25.
9
Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses.
PLoS One. 2017 Apr 27;12(4):e0176154. doi: 10.1371/journal.pone.0176154. eCollection 2017.
10
Centrifuge: rapid and sensitive classification of metagenomic sequences.
Genome Res. 2016 Dec;26(12):1721-1729. doi: 10.1101/gr.210641.116. Epub 2016 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验