Suppr超能文献

患有严重急性营养不良的马拉维双胞胎的肠道DNA病毒组

Gut DNA viromes of Malawian twins discordant for severe acute malnutrition.

作者信息

Reyes Alejandro, Blanton Laura V, Cao Song, Zhao Guoyan, Manary Mark, Trehan Indi, Smith Michelle I, Wang David, Virgin Herbert W, Rohwer Forest, Gordon Jeffrey I

机构信息

Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Sciences, Universidad de los Andes, Bogota, 111711 Colombia;

Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108;

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11941-6. doi: 10.1073/pnas.1514285112. Epub 2015 Sep 8.

Abstract

The bacterial component of the human gut microbiota undergoes a definable program of postnatal development. Evidence is accumulating that this program is disrupted in children with severe acute malnutrition (SAM) and that their persistent gut microbiota immaturity, which is not durably repaired with current ready-to-use therapeutic food (RUTF) interventions, is causally related to disease pathogenesis. To further characterize gut microbial community development in healthy versus malnourished infants/children, we performed a time-series metagenomic study of DNA isolated from virus-like particles (VLPs) recovered from fecal samples collected during the first 30 mo of postnatal life from eight pairs of mono- and dizygotic Malawian twins concordant for healthy growth and 12 twin pairs discordant for SAM. Both members of discordant pairs were sampled just before, during, and after treatment with a peanut-based RUTF. Using Random Forests and a dataset of 17,676 viral contigs assembled from shotgun sequencing reads of VLP DNAs, we identified viruses that distinguish different stages in the assembly of the gut microbiota in the concordant healthy twin pairs. This developmental program is impaired in both members of SAM discordant pairs and not repaired with RUTF. Phage plus members of the Anelloviridae and Circoviridae families of eukaryotic viruses discriminate discordant from concordant healthy pairs. These results disclose that apparently healthy cotwins in discordant pairs have viromes associated with, although not necessarily mediators, of SAM; as such, they provide a human model for delineating normal versus perturbed postnatal acquisition and retention of the gut microbiota's viral component in populations at risk for malnutrition.

摘要

人类肠道微生物群的细菌成分经历了一个可定义的出生后发育程序。越来越多的证据表明,这个程序在患有严重急性营养不良(SAM)的儿童中受到破坏,而且他们持续的肠道微生物群不成熟(目前的即用型治疗食品(RUTF)干预措施无法持久修复)与疾病发病机制存在因果关系。为了进一步描述健康与营养不良婴儿/儿童肠道微生物群落的发育情况,我们对从出生后30个月内收集的粪便样本中回收的病毒样颗粒(VLP)分离的DNA进行了时间序列宏基因组研究,这些样本来自八对在健康生长方面一致的单卵和双卵马拉维双胞胎,以及12对在SAM方面不一致的双胞胎。不一致双胞胎对中的双方在使用基于花生的RUTF治疗前、治疗期间和治疗后都进行了采样。利用随机森林和从VLP DNA的鸟枪法测序读数组装的17676个病毒重叠群的数据集,我们确定了区分健康一致双胞胎对中肠道微生物群组装不同阶段的病毒。这个发育程序在SAM不一致双胞胎对的双方都受到损害,并且不能通过RUTF修复。噬菌体以及圆环病毒科和环状病毒科的真核病毒成员能够区分不一致的健康双胞胎对和一致的健康双胞胎对。这些结果表明,不一致双胞胎对中看似健康的同卵双胞胎具有与SAM相关的病毒组(尽管不一定是介导因素);因此,它们为描绘营养不良风险人群中正常与受干扰的出生后肠道微生物群病毒成分的获取和保留提供了一个人类模型。

相似文献

1
Gut DNA viromes of Malawian twins discordant for severe acute malnutrition.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11941-6. doi: 10.1073/pnas.1514285112. Epub 2015 Sep 8.
2
Gut microbiomes of Malawian twin pairs discordant for kwashiorkor.
Science. 2013 Feb 1;339(6119):548-54. doi: 10.1126/science.1229000. Epub 2013 Jan 30.
3
Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice.
Nature. 2016 Jun 9;534(7606):263-6. doi: 10.1038/nature17940. Epub 2016 May 25.
4
Healthy Cotwins Share Gut Microbiome Signatures With Their Inflammatory Bowel Disease Twins and Unrelated Patients.
Gastroenterology. 2021 May;160(6):1970-1985. doi: 10.1053/j.gastro.2021.01.030. Epub 2021 Jan 19.
5
Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins.
Cell Host Microbe. 2019 Feb 13;25(2):261-272.e5. doi: 10.1016/j.chom.2019.01.019.
6
Persistent gut microbiota immaturity in malnourished Bangladeshi children.
Nature. 2014 Jun 19;510(7505):417-21. doi: 10.1038/nature13421. Epub 2014 Jun 4.
7
The gut virome of healthy children during the first year of life is diverse and dynamic.
PLoS One. 2021 Apr 14;16(4):e0240958. doi: 10.1371/journal.pone.0240958. eCollection 2021.
8
Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut.
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20236-41. doi: 10.1073/pnas.1319470110. Epub 2013 Nov 20.
9
The gut virome of the protochordate model organism, Ciona intestinalis subtype A.
Virus Res. 2018 Jan 15;244:137-146. doi: 10.1016/j.virusres.2017.11.015. Epub 2017 Nov 15.
10
The human gut virome: inter-individual variation and dynamic response to diet.
Genome Res. 2011 Oct;21(10):1616-25. doi: 10.1101/gr.122705.111. Epub 2011 Aug 31.

引用本文的文献

1
A prevalent huge phage clade in human and animal gut microbiomes.
Res Sq. 2025 Aug 19:rs.3.rs-7356405. doi: 10.21203/rs.3.rs-7356405/v1.
2
A prevalent huge phage clade in human and animal gut microbiomes.
bioRxiv. 2025 Aug 11:2025.08.10.669567. doi: 10.1101/2025.08.10.669567.
3
Phage-Microbiota Crosstalk: Implications for Central Nervous System Disorders.
Int J Mol Sci. 2025 Jun 26;26(13):6183. doi: 10.3390/ijms26136183.
4
An Exploration of the Relationship Between Gut Virome and Cardiovascular Disease: A Comprehensive Review.
Rev Cardiovasc Med. 2025 Jun 24;26(6):36386. doi: 10.31083/RCM36386. eCollection 2025 Jun.
5
Gut virome: New key players in the pathogenesis of inflammatory bowel disease.
World J Methodol. 2025 Jun 20;15(2):92592. doi: 10.5662/wjm.v15.i2.92592.
6
The gut virome and human health: From diversity to personalized medicine.
Eng Microbiol. 2025 Feb 7;5(1):100191. doi: 10.1016/j.engmic.2025.100191. eCollection 2025 Mar.
7
The influence of early life exposures on the infant gut virome.
Gut Microbes. 2025 Dec;17(1):2501194. doi: 10.1080/19490976.2025.2501194. Epub 2025 May 21.
10
Expanding the human gut microbiome atlas of Africa.
Nature. 2025 Feb;638(8051):718-728. doi: 10.1038/s41586-024-08485-8. Epub 2025 Jan 29.

本文引用的文献

1
Cultivating healthy growth and nutrition through the gut microbiota.
Cell. 2015 Mar 26;161(1):36-48. doi: 10.1016/j.cell.2015.03.013.
4
Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection.
Science. 2015 Jan 16;347(6219):266-9. doi: 10.1126/science.1258025. Epub 2014 Nov 27.
5
Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity.
Science. 2015 Jan 16;347(6219):269-73. doi: 10.1126/science.1258100. Epub 2014 Nov 27.
6
Management of severe acute malnutrition in low-income and middle-income countries.
Arch Dis Child. 2015 Mar;100(3):283-7. doi: 10.1136/archdischild-2014-306026. Epub 2014 Nov 24.
7
Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients.
Am J Transplant. 2015 Jan;15(1):200-9. doi: 10.1111/ajt.13031. Epub 2014 Nov 17.
9
Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter.
Science. 2014 Aug 1;345(6196):573-7. doi: 10.1126/science.1254517. Epub 2014 Jun 26.
10
Persistent gut microbiota immaturity in malnourished Bangladeshi children.
Nature. 2014 Jun 19;510(7505):417-21. doi: 10.1038/nature13421. Epub 2014 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验