Reyes Alejandro, Blanton Laura V, Cao Song, Zhao Guoyan, Manary Mark, Trehan Indi, Smith Michelle I, Wang David, Virgin Herbert W, Rohwer Forest, Gordon Jeffrey I
Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Sciences, Universidad de los Andes, Bogota, 111711 Colombia;
Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108;
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11941-6. doi: 10.1073/pnas.1514285112. Epub 2015 Sep 8.
The bacterial component of the human gut microbiota undergoes a definable program of postnatal development. Evidence is accumulating that this program is disrupted in children with severe acute malnutrition (SAM) and that their persistent gut microbiota immaturity, which is not durably repaired with current ready-to-use therapeutic food (RUTF) interventions, is causally related to disease pathogenesis. To further characterize gut microbial community development in healthy versus malnourished infants/children, we performed a time-series metagenomic study of DNA isolated from virus-like particles (VLPs) recovered from fecal samples collected during the first 30 mo of postnatal life from eight pairs of mono- and dizygotic Malawian twins concordant for healthy growth and 12 twin pairs discordant for SAM. Both members of discordant pairs were sampled just before, during, and after treatment with a peanut-based RUTF. Using Random Forests and a dataset of 17,676 viral contigs assembled from shotgun sequencing reads of VLP DNAs, we identified viruses that distinguish different stages in the assembly of the gut microbiota in the concordant healthy twin pairs. This developmental program is impaired in both members of SAM discordant pairs and not repaired with RUTF. Phage plus members of the Anelloviridae and Circoviridae families of eukaryotic viruses discriminate discordant from concordant healthy pairs. These results disclose that apparently healthy cotwins in discordant pairs have viromes associated with, although not necessarily mediators, of SAM; as such, they provide a human model for delineating normal versus perturbed postnatal acquisition and retention of the gut microbiota's viral component in populations at risk for malnutrition.
人类肠道微生物群的细菌成分经历了一个可定义的出生后发育程序。越来越多的证据表明,这个程序在患有严重急性营养不良(SAM)的儿童中受到破坏,而且他们持续的肠道微生物群不成熟(目前的即用型治疗食品(RUTF)干预措施无法持久修复)与疾病发病机制存在因果关系。为了进一步描述健康与营养不良婴儿/儿童肠道微生物群落的发育情况,我们对从出生后30个月内收集的粪便样本中回收的病毒样颗粒(VLP)分离的DNA进行了时间序列宏基因组研究,这些样本来自八对在健康生长方面一致的单卵和双卵马拉维双胞胎,以及12对在SAM方面不一致的双胞胎。不一致双胞胎对中的双方在使用基于花生的RUTF治疗前、治疗期间和治疗后都进行了采样。利用随机森林和从VLP DNA的鸟枪法测序读数组装的17676个病毒重叠群的数据集,我们确定了区分健康一致双胞胎对中肠道微生物群组装不同阶段的病毒。这个发育程序在SAM不一致双胞胎对的双方都受到损害,并且不能通过RUTF修复。噬菌体以及圆环病毒科和环状病毒科的真核病毒成员能够区分不一致的健康双胞胎对和一致的健康双胞胎对。这些结果表明,不一致双胞胎对中看似健康的同卵双胞胎具有与SAM相关的病毒组(尽管不一定是介导因素);因此,它们为描绘营养不良风险人群中正常与受干扰的出生后肠道微生物群病毒成分的获取和保留提供了一个人类模型。