Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States.
Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States.
Neurosci Res. 2020 Jan;150:51-59. doi: 10.1016/j.neures.2019.01.009. Epub 2019 Feb 11.
Given the amygdala's role in survival mechanisms, and its pivotal contributions to psychological processes, it is no surprise that it is one of the most well-studied brain regions. One of the common methods for understanding the functional role of the amygdala is the use of functional magnetic resonance imaging (fMRI). However, fMRI tends to be acquired using resolutions that are not optimal for smaller brain structures. Furthermore, standard processing includes spatial smoothing and motion correction which further degrade the resolution of the data. Inferentially, this may be detrimental when determining if the amygdalae are active during a task. Indeed, studies using the same task may show differential amygdala(e) activation. Here, we examine the effects of well-accepted preprocessing steps on whole-brain submillimeter fMRI data to determine the impact on activation patterns associated with a robust task known to activate the amygdala(e). We analyzed 7T fMRI data from 30 healthy individuals collected at sub-millimeter in-plane resolution and used a field standard preprocessing pipeline with different combinations of smoothing kernels and motion correction options. Resultant amygdalae activation patterns were altered depending on which combination of smoothing and motion correction were performed, indicating that whole-brain preprocessing steps have a significant impact on the inferences that can be drawn about smaller, subcortical structures like the amygdala.
鉴于杏仁核在生存机制中的作用及其对心理过程的关键贡献,毫不奇怪,它是研究最深入的大脑区域之一。了解杏仁核功能作用的常用方法之一是使用功能磁共振成像 (fMRI)。然而,fMRI 通常使用的分辨率对于较小的脑结构来说不是最佳的。此外,标准处理包括空间平滑和运动校正,这进一步降低了数据的分辨率。推断起来,当确定在任务期间杏仁核是否活跃时,这可能是有害的。事实上,使用相同任务的研究可能会显示出杏仁核的不同激活。在这里,我们研究了公认的预处理步骤对全脑亚毫米 fMRI 数据的影响,以确定这些步骤对与已知激活杏仁核的强大任务相关的激活模式的影响。我们分析了来自 30 名健康个体的 7T fMRI 数据,这些数据在亚毫米的面内分辨率下采集,并使用具有不同平滑核和运动校正选项组合的字段标准预处理管道。结果表明,杏仁核的激活模式取决于执行的平滑和运动校正的组合,这表明全脑预处理步骤对可以对较小的皮质下结构(如杏仁核)进行的推断有重大影响。