Suppr超能文献

左侧、右侧还是双侧杏仁核激活?平滑和运动校正对超高场、高分辨率功能磁共振成像(fMRI)数据的影响如何改变推论。

Left, right, or bilateral amygdala activation? How effects of smoothing and motion correction on ultra-high field, high-resolution functional magnetic resonance imaging (fMRI) data alter inferences.

机构信息

Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States.

Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States.

出版信息

Neurosci Res. 2020 Jan;150:51-59. doi: 10.1016/j.neures.2019.01.009. Epub 2019 Feb 11.

Abstract

Given the amygdala's role in survival mechanisms, and its pivotal contributions to psychological processes, it is no surprise that it is one of the most well-studied brain regions. One of the common methods for understanding the functional role of the amygdala is the use of functional magnetic resonance imaging (fMRI). However, fMRI tends to be acquired using resolutions that are not optimal for smaller brain structures. Furthermore, standard processing includes spatial smoothing and motion correction which further degrade the resolution of the data. Inferentially, this may be detrimental when determining if the amygdalae are active during a task. Indeed, studies using the same task may show differential amygdala(e) activation. Here, we examine the effects of well-accepted preprocessing steps on whole-brain submillimeter fMRI data to determine the impact on activation patterns associated with a robust task known to activate the amygdala(e). We analyzed 7T fMRI data from 30 healthy individuals collected at sub-millimeter in-plane resolution and used a field standard preprocessing pipeline with different combinations of smoothing kernels and motion correction options. Resultant amygdalae activation patterns were altered depending on which combination of smoothing and motion correction were performed, indicating that whole-brain preprocessing steps have a significant impact on the inferences that can be drawn about smaller, subcortical structures like the amygdala.

摘要

鉴于杏仁核在生存机制中的作用及其对心理过程的关键贡献,毫不奇怪,它是研究最深入的大脑区域之一。了解杏仁核功能作用的常用方法之一是使用功能磁共振成像 (fMRI)。然而,fMRI 通常使用的分辨率对于较小的脑结构来说不是最佳的。此外,标准处理包括空间平滑和运动校正,这进一步降低了数据的分辨率。推断起来,当确定在任务期间杏仁核是否活跃时,这可能是有害的。事实上,使用相同任务的研究可能会显示出杏仁核的不同激活。在这里,我们研究了公认的预处理步骤对全脑亚毫米 fMRI 数据的影响,以确定这些步骤对与已知激活杏仁核的强大任务相关的激活模式的影响。我们分析了来自 30 名健康个体的 7T fMRI 数据,这些数据在亚毫米的面内分辨率下采集,并使用具有不同平滑核和运动校正选项组合的字段标准预处理管道。结果表明,杏仁核的激活模式取决于执行的平滑和运动校正的组合,这表明全脑预处理步骤对可以对较小的皮质下结构(如杏仁核)进行的推断有重大影响。

相似文献

2
Reproducibility of amygdala activation in facial emotion processing at 7T.
Neuroimage. 2020 May 1;211:116585. doi: 10.1016/j.neuroimage.2020.116585. Epub 2020 Jan 26.
3
The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis.
Neuroimage. 2016 May 15;132:32-42. doi: 10.1016/j.neuroimage.2016.02.033. Epub 2016 Feb 17.
4
Critical factors in achieving fine-scale functional MRI: Removing sources of inadvertent spatial smoothing.
Hum Brain Mapp. 2022 Aug 1;43(11):3311-3331. doi: 10.1002/hbm.25867. Epub 2022 Apr 13.
6
The influence of spatial resolution and smoothing on the detectability of resting-state and task fMRI.
Neuroimage. 2014 Feb 1;86:221-30. doi: 10.1016/j.neuroimage.2013.09.001. Epub 2013 Sep 8.
8
Spatial smoothing systematically biases the localization of reward-related brain activity.
Neuroimage. 2013 Feb 1;66:270-7. doi: 10.1016/j.neuroimage.2012.10.056. Epub 2012 Oct 27.
9
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
Magn Reson Imaging. 2009 Feb;27(2):264-78. doi: 10.1016/j.mri.2008.05.021. Epub 2008 Oct 11.
10
Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI.
Magn Reson Imaging. 2010 Feb;28(2):235-44. doi: 10.1016/j.mri.2009.07.005. Epub 2009 Aug 19.

引用本文的文献

1
Perturbing whole-brain models of brain hierarchy: An application for depression following pharmacological treatment.
Ann N Y Acad Sci. 2025 Aug;1550(1):255-272. doi: 10.1111/nyas.15391. Epub 2025 Jul 21.
2
Relation between resting amygdala activity and cardiovascular events in patients with cardiac sarcoidosis.
Eur J Nucl Med Mol Imaging. 2025 Apr 14. doi: 10.1007/s00259-025-07266-3.
3
Is political ideology correlated with brain structure? A preregistered replication.
iScience. 2024 Sep 19;27(10):110532. doi: 10.1016/j.isci.2024.110532. eCollection 2024 Oct 18.
4
Maternal prenatal lead levels and neonatal brain volumes: Testing moderations by maternal depressive symptoms and family income.
Neurotoxicol Teratol. 2024 Mar-Apr;102:107322. doi: 10.1016/j.ntt.2024.107322. Epub 2024 Jan 18.
5
Thalamo-cortical circuits associated with trait- and state-repetitive negative thinking in major depressive disorder.
J Psychiatr Res. 2023 Dec;168:184-192. doi: 10.1016/j.jpsychires.2023.10.058. Epub 2023 Oct 27.
7
Pre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications.
Front Neuroimaging. 2022 May 4;1:869454. doi: 10.3389/fnimg.2022.869454. eCollection 2022.
8
9
Effects of Parent Emotion Socialization on the Neurobiology Underlying Adolescent Emotion Processing: A Multimethod fMRI Study.
Res Child Adolesc Psychopathol. 2022 Feb;50(2):149-161. doi: 10.1007/s10802-020-00736-2. Epub 2020 Nov 20.
10
Topography of hippocampal connectivity with sensorimotor cortex revealed by optimizing smoothing kernel and voxel size.
PLoS One. 2021 Dec 7;16(12):e0260245. doi: 10.1371/journal.pone.0260245. eCollection 2021.

本文引用的文献

1
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
2
Best practices in data analysis and sharing in neuroimaging using MRI.
Nat Neurosci. 2017 Feb 23;20(3):299-303. doi: 10.1038/nn.4500.
3
Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project.
Neuroimage. 2017 Jul 1;154:23-32. doi: 10.1016/j.neuroimage.2016.11.049. Epub 2016 Nov 25.
4
Aberrant Functional Connectivity between the Amygdala and the Temporal Pole in Drug-Free Generalized Anxiety Disorder.
Front Hum Neurosci. 2016 Nov 4;10:549. doi: 10.3389/fnhum.2016.00549. eCollection 2016.
5
Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression.
J Affect Disord. 2017 Jan 1;207:86-94. doi: 10.1016/j.jad.2016.09.026. Epub 2016 Sep 23.
8
The first step for neuroimaging data analysis: DICOM to NIfTI conversion.
J Neurosci Methods. 2016 May 1;264:47-56. doi: 10.1016/j.jneumeth.2016.03.001. Epub 2016 Mar 2.
9
Amygdala subnuclei response and connectivity during emotional processing.
Neuroimage. 2016 Jun;133:98-110. doi: 10.1016/j.neuroimage.2016.02.056. Epub 2016 Feb 27.
10
Amygdala Modulation of Cerebellar Learning.
J Neurosci. 2016 Feb 17;36(7):2190-201. doi: 10.1523/JNEUROSCI.3361-15.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验