Suppr超能文献

利用计算机视觉技术进行植物物种识别:一项系统文献综述。

Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review.

作者信息

Wäldchen Jana, Mäder Patrick

机构信息

1Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745 Jena, Germany.

2Software Engineering for Safety-Critical Systems, Technische Universität Ilmenau, Helmholtzplatz 5, 98693 Ilmenau, Germany.

出版信息

Arch Comput Methods Eng. 2018;25(2):507-543. doi: 10.1007/s11831-016-9206-z. Epub 2017 Jan 7.

Abstract

Species knowledge is essential for protecting biodiversity. The identification of plants by conventional keys is complex, time consuming, and due to the use of specific botanical terms frustrating for non-experts. This creates a hard to overcome hurdle for novices interested in acquiring species knowledge. Today, there is an increasing interest in automating the process of species identification. The availability and ubiquity of relevant technologies, such as, digital cameras and mobile devices, the remote access to databases, new techniques in image processing and pattern recognition let the idea of automated species identification become reality. This paper is the first systematic literature review with the aim of a thorough analysis and comparison of primary studies on computer vision approaches for plant species identification. We identified 120 peer-reviewed studies, selected through a multi-stage process, published in the last 10 years (2005-2015). After a careful analysis of these studies, we describe the applied methods categorized according to the studied plant organ, and the studied features, i.e., shape, texture, color, margin, and vein structure. Furthermore, we compare methods based on classification accuracy achieved on publicly available datasets. Our results are relevant to researches in ecology as well as computer vision for their ongoing research. The systematic and concise overview will also be helpful for beginners in those research fields, as they can use the comparable analyses of applied methods as a guide in this complex activity.

摘要

物种知识对于保护生物多样性至关重要。使用传统检索表来识别植物既复杂又耗时,而且由于使用了特定的植物学术语,对于非专业人士来说很令人沮丧。这给想要获取物种知识的新手造成了一个难以克服的障碍。如今,人们对实现物种识别过程的自动化越来越感兴趣。诸如数码相机和移动设备等相关技术的可用性和普及性、对数据库的远程访问、图像处理和模式识别方面的新技术,使得自动化物种识别的想法成为现实。本文是第一篇系统性文献综述,旨在对关于植物物种识别的计算机视觉方法的初步研究进行全面分析和比较。我们通过多阶段筛选过程,确定了过去10年(2005 - 2015年)发表的120篇经过同行评审的研究。在对这些研究进行仔细分析之后,我们描述了根据所研究的植物器官以及所研究的特征(即形状、纹理、颜色、边缘和叶脉结构)进行分类的应用方法。此外,我们还比较了基于公开可用数据集所实现的分类准确率的方法。我们的研究结果与生态学以及计算机视觉领域的正在进行的研究相关。这一系统而简洁的综述对于那些研究领域的初学者也将有所帮助,因为他们可以将应用方法的可比分析用作这一复杂活动的指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b257/6003396/de3dd527473c/11831_2016_9206_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验