Suppr超能文献

使用用于立体光刻的双固化丙烯酸酯基树脂理解和改善3D打印部件的机械性能。

Understanding and Improving Mechanical Properties in 3D printed Parts Using a Dual-Cure Acrylate-Based Resin for Stereolithography.

作者信息

Uzcategui Asais Camila, Muralidharan Archish, Ferguson Virginia L, Bryant Stephanie J, McLeod Robert R

机构信息

Materials Science and Engineering University of Colorado Boulder Boulder, CO 80309, USA.

Department of Mechanical Engineering University of Colorado Boulder Boulder, CO 80309, USA.

出版信息

Adv Eng Mater. 2018 Dec;20(12). doi: 10.1002/adem.201800876. Epub 2018 Sep 20.

Abstract

Application of 3D printed structures via stereolithography (SLA) is limited by imprecise dimensional control and inferior mechanical properties. These challenges is attributed to poor understanding ofpolymerization behavior during the printing process and inadequate post-processing methods. The former via a modified version of Jacob's working curve equation that incorporates the resin's sub-linear response to irradiation intensity is addressed by the authors. This new model provides a more accurate approach to select 3D printing parameters given a desired z-resolution and conversion profile along the depth of the printed part. The authors use this improved model to motivate a novel material design that can be post-processed to be indistinguishable from the polymer at 100% conversion. This approach employs a dual initiating system in which photo-initiated printing is followed by a thermal post-cure to achieve uniform conversion. The authors show that this approach enables fast printing times (10 s per layer), exceptional horizontal resolution (1-10 microns), precise control over vertical resolution, and decreased surface corrugations on a 10's of microns scale. The techniques described herein use an acrylate-based SLA resin, but the approach can be extended to other monomer systems to simultaneously achieve predictable properties and dimensions that are critical for application of additive manufacturing in load-bearing applications.

摘要

通过立体光刻(SLA)技术应用3D打印结构受到尺寸控制不精确和机械性能较差的限制。这些挑战归因于对打印过程中聚合行为的理解不足以及后处理方法不完善。作者通过修正雅各布工作曲线方程的一个版本来解决前者,该方程纳入了树脂对辐照强度的亚线性响应。给定所需的z分辨率和沿打印部件深度的转化率分布,这个新模型为选择3D打印参数提供了一种更准确的方法。作者利用这个改进的模型推动了一种新型材料设计,这种材料经过后处理后在100%转化率下与聚合物难以区分。这种方法采用双引发体系,其中光引发打印之后进行热后固化以实现均匀转化。作者表明,这种方法能够实现快速打印时间(每层10秒)、出色的水平分辨率(1 - 10微米)、对垂直分辨率的精确控制以及在几十微米尺度上减少表面波纹。本文所述技术使用基于丙烯酸酯的SLA树脂,但该方法可扩展到其他单体体系,以同时实现对于增材制造在承重应用中的应用至关重要的可预测性能和尺寸。

相似文献

5
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
PLoS One. 2020 Oct 28;15(10):e0240237. doi: 10.1371/journal.pone.0240237. eCollection 2020.
6
Experimental Characterization Framework for SLA Additive Manufacturing Materials.
Polymers (Basel). 2021 Apr 2;13(7):1147. doi: 10.3390/polym13071147.
7
3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer.
Addit Manuf. 2018 Oct;23:374-380. doi: 10.1016/j.addma.2018.08.019. Epub 2018 Aug 18.
8
Effect of printing direction on stress distortion of three-dimensional printed dentures using stereolithography technology.
J Mech Behav Biomed Mater. 2020 Oct;110:103949. doi: 10.1016/j.jmbbm.2020.103949. Epub 2020 Jul 9.
9
Stereolithography 3D printing technology in pharmaceuticals: a review.
Drug Dev Ind Pharm. 2021 Sep;47(9):1362-1372. doi: 10.1080/03639045.2021.1994990. Epub 2021 Oct 29.

引用本文的文献

1
Light-based vat-polymerization bioprinting.
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
3
Lithography-based 3D printing of hydrogels.
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.
5
Effects of Post-Processing Parameters on 3D-Printed Dental Appliances: A Review.
Polymers (Basel). 2024 Oct 1;16(19):2795. doi: 10.3390/polym16192795.
6
Additive manufacturing of highly entangled polymer networks.
Science. 2024 Aug 2;385(6708):566-572. doi: 10.1126/science.adn6925. Epub 2024 Aug 1.
7
An adjustable acoustic metamaterial cell using a magnetic membrane for tunable resonance.
Sci Rep. 2024 Jul 1;14(1):15044. doi: 10.1038/s41598-024-65819-2.
8
Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold.
Ann Biomed Eng. 2024 Aug;52(8):2162-2177. doi: 10.1007/s10439-024-03516-x. Epub 2024 Apr 29.
9
The status and challenging perspectives of 3D-printed micro-batteries.
Chem Sci. 2024 Mar 12;15(15):5451-5481. doi: 10.1039/d3sc06999k. eCollection 2024 Apr 17.
10
Results of an interlaboratory study on the working curve in vat photopolymerization.
Addit Manuf. 2024 Mar;84. doi: 10.1016/j.addma.2024.104082.

本文引用的文献

2
A Stereolithography-Based 3D Printed Hybrid Scaffold for In Situ Cartilage Defect Repair.
Macromol Biosci. 2018 Feb;18(2). doi: 10.1002/mabi.201700267. Epub 2017 Dec 21.
3
Anisotropy of Photopolymer Parts Made by Digital Light Processing.
Materials (Basel). 2017 Jan 13;10(1):64. doi: 10.3390/ma10010064.
4
Polymers for 3D Printing and Customized Additive Manufacturing.
Chem Rev. 2017 Aug 9;117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074. Epub 2017 Jul 30.
5
Employing Theories Far beyond Their Limits-The Case of the (Boguer-) Beer-Lambert Law.
Chemphyschem. 2016 Jul 4;17(13):1948-55. doi: 10.1002/cphc.201600114. Epub 2016 Apr 5.
6
Additive manufacturing. Continuous liquid interface production of 3D objects.
Science. 2015 Mar 20;347(6228):1349-52. doi: 10.1126/science.aaa2397. Epub 2015 Mar 16.
8
Three-Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson's Ratio.
Adv Funct Mater. 2011 Jul 22;21(14):2712-2720. doi: 10.1002/adfm.201002022.
9
Irradiation modes' impact on radical entrapment in photoactive resins.
J Dent Res. 2010 Dec;89(12):1494-8. doi: 10.1177/0022034510384624. Epub 2010 Oct 12.
10
Influence of light polymerization modes on degree of conversion and crosslink density of dental composites.
J Mater Sci Mater Med. 2008 Mar;19(3):1027-32. doi: 10.1007/s10856-007-3220-5. Epub 2007 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验