Kukumberg Marek, Yao Yuan, Goh Seok Hong, Neo Dawn Jh, Yao Jia Yi, Yim Evelyn Kf
Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411.
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
Adv Biosyst. 2018 Jun;2(6). doi: 10.1002/adbi.201700217. Epub 2018 Apr 24.
Adhesion and proliferation of vascular endothelial cells are important parameters in the endothelialization of biomedical devices for vascular applications. Endothelialization is a complex process affected by endothelial cells and their interaction with the extracellular microenvironment. Although numerous approaches are taken to study the influence of the external environment, a systematic investigation of the impact of an engineered microenvironment on endothelial cell processes is needed. This study aims to investigate the influence of topography, initial cell seeding density, and collagen coating on human umbilical vein endothelial cells (HUVECs). Utilizing the MultiARChitecture (MARC) chamber, the effects of various topographies on HUVECs are identified, and those with more prominent effects were further evaluated individually using the MARC plate. Endothelial cell marker expression and monocyte adhesion assay are examined on the HUVEC monolayer. HUVECs on 1.8 μm convex and concave microlens topographies demonstrate the lowest cell adhesion and proliferation, regardless of initial cell seeding density and collagen I coating, and the HUVEC monolayer on the microlens shows the lowest monocyte adhesion. This property of lens topographies would potentially be a useful parameter in designing vascular biomedical devices. The MARC chamber and MARC plate show a great potential for faster and easy pattern identification for various cellular processes.
血管内皮细胞的黏附和增殖是用于血管应用的生物医学装置内皮化的重要参数。内皮化是一个受内皮细胞及其与细胞外微环境相互作用影响的复杂过程。尽管人们采取了多种方法来研究外部环境的影响,但仍需要对工程化微环境对内皮细胞过程的影响进行系统研究。本研究旨在探讨形貌、初始细胞接种密度和胶原蛋白包被对人脐静脉内皮细胞(HUVECs)的影响。利用MultiARChitecture(MARC)腔室,确定了各种形貌对HUVECs的影响,并使用MARC板对那些影响更显著的形貌进行了单独进一步评估。在HUVEC单层上检测内皮细胞标志物表达和单核细胞黏附试验。无论初始细胞接种密度和I型胶原蛋白包被如何,1.8μm凸凹微透镜形貌上的HUVECs表现出最低的细胞黏附和增殖,并且微透镜上的HUVEC单层表现出最低的单核细胞黏附。透镜形貌的这一特性可能是设计血管生物医学装置的一个有用参数。MARC腔室和MARC板在快速、轻松地识别各种细胞过程的模式方面显示出巨大潜力。