CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Adv Drug Deliv Rev. 2019 Jul;147:2-21. doi: 10.1016/j.addr.2019.02.003. Epub 2019 Feb 12.
Nanomaterials employed for enhanced drug delivery and therapeutic effects have been extensively investigated in the past decade. The outcome of current anticancer treatments based on conventional nanoparticles is suboptimal, due to the lack of biocompatibility, the deficient tumor targeting, the limited drug accumulation in the diseased region, etc. Alternatively, DNA-based nanocarriers have emerged as a novel and versatile platform to integrate the advantages of nanotechnologies and biological sciences, which shows great promise in addressing the key issues for biomedical studies. Rather than a genetic information carrier, DNA molecules can work as building blocks to fabricate programmable and bio-functional nanostructures based on Watson Crick base-pairing rules. The DNA-based materials have demonstrated unique properties, such as uniform sizes and shapes, pre-designable and programmable nanostructures, site-specific surface functionality and excellent biocompatibility. These intrigue features allow DNA nanostructures to carry functional moieties to realize precise tumor recognition, customized therapeutic functions and stimuli-responsive drug release, making them highly attractive in many aspects of cancer treatment. In this review, we focus on the recent progress in DNA-based self-assembled materials for the biomedical applications, such as molecular imaging, drug delivery for in vitro or in vivo cancer treatments. We introduce the general strategies and essential requirements for fabricating DNA-based nanocarriers. We summarize the advances of DNA-based nanocarriers according to their functionalities and structural properties for cancer diagnosis and therapy. Finally, we discuss the challenges and future perspectives regarding the detailed in vivo parameters of DNA materials and the design of intelligent DNA nanomedicine for individualized cancer therapy.
在过去的十年中,人们广泛研究了用于增强药物输送和治疗效果的纳米材料。由于缺乏生物相容性、肿瘤靶向性差、病变部位药物积累有限等原因,基于传统纳米粒子的当前抗癌治疗效果并不理想。相比之下,基于 DNA 的纳米载体作为一种新颖而多功能的平台,集成了纳米技术和生物科学的优势,在解决生物医学研究的关键问题方面显示出巨大的潜力。DNA 分子不是遗传信息的载体,而是可以作为构建块,根据 Watson-Crick 碱基配对规则,构建可编程和具有生物功能的纳米结构。基于 DNA 的材料具有独特的性质,如均匀的尺寸和形状、可预先设计和可编程的纳米结构、特定位置的表面功能和出色的生物相容性。这些引人入胜的特性使得 DNA 纳米结构能够携带功能部分,从而实现精确的肿瘤识别、定制的治疗功能和对刺激的药物释放,使其在癌症治疗的许多方面都具有吸引力。在本文中,我们重点介绍了用于生物医学应用的基于 DNA 的自组装材料的最新进展,如分子成像、体外或体内癌症治疗的药物输送。我们介绍了制造基于 DNA 的纳米载体的一般策略和基本要求。我们根据 DNA 纳米载体的功能和结构特性,总结了其在癌症诊断和治疗方面的进展。最后,我们讨论了关于 DNA 材料的详细体内参数和个体化癌症治疗的智能 DNA 纳米医学设计的挑战和未来展望。