Wang Haiyang, Shabala Lana, Zhou Meixue, Shabala Sergey
Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001 Australia.
Plant Methods. 2019 Feb 6;15:12. doi: 10.1186/s13007-019-0397-9. eCollection 2019.
More than 20% of the world's agricultural land is affected by salinity, resulting in multibillion-dollar penalties and jeopardising food security. While the recent progress in molecular technologies has significantly advanced plant breeding for salinity stress tolerance, accurate plant phenotyping remains a bottleneck of many breeding programs. We have recently shown the existence of a strong causal link between salinity and oxidative stress tolerance in cereals (wheat and barley). Using the microelectrode ion flux estimation (MIFE) method, we have also found a major QTL conferring ROS control of ion flux in roots that coincided with the major QTL for the overall salinity stress tolerance. These findings open new (previously unexplored) prospects of improving salinity tolerance by pyramiding this trait alongside with other (traditional) mechanisms.
In this work, two high-throughput phenotyping methods-viability assay and root growth assay-were tested and assessed as a viable alternative to the (technically complicated) MIFE method using barley as a check species. In viability staining experiments, a dose-dependent HO-triggered loss of root cell viability was observed, with salt sensitive varieties showing significantly more damage to root cells. In the root growth assays, relative root length (RRL) was measured in plants grown in paper rolls under different HO concentrations. The biggest difference in RRL between contrasting varieties was observed for 1 mM HO treatment. Under these conditions, a significant negative correlation in the reduction in RRL and the overall salinity tolerance is reported.
These findings offer plant breeders a convenient high throughput method to screen germplasm for oxidative stress tolerance, targeting root-based genes regulating ion homeostasis and thus conferring salinity stress tolerance in barley (and potentially other species).
全球超过20%的农业用地受到盐害影响,造成了数十亿美元的损失,并危及粮食安全。虽然分子技术最近取得的进展显著推动了耐盐胁迫植物育种工作,但准确的植物表型分析仍然是许多育种计划的瓶颈。我们最近发现谷物(小麦和大麦)的盐害与氧化胁迫耐受性之间存在很强的因果关系。使用微电极离子通量估算(MIFE)方法,我们还发现了一个主要的数量性状基因座(QTL),它控制着根系离子通量的活性氧(ROS),这与整体盐胁迫耐受性的主要QTL相吻合。这些发现为通过将该性状与其他(传统)机制相结合来提高耐盐性开辟了新的(以前未探索过的)前景。
在这项工作中,测试并评估了两种高通量表型分析方法——活力测定法和根系生长测定法,作为使用大麦作为对照物种替代(技术复杂的)MIFE方法的可行选择。在活力染色实验中,观察到过氧化氢(HO)引发的根系细胞活力丧失呈剂量依赖性,盐敏感品种的根系细胞损伤明显更严重。在根系生长测定中,测量了在不同HO浓度下纸卷中生长植物的相对根长(RRL)。在1 mM HO处理下,观察到不同品种之间RRL的最大差异。在这些条件下,报告了RRL降低与整体盐耐受性之间存在显著的负相关。
这些发现为植物育种者提供了一种便捷的高通量方法,用于筛选种质的氧化胁迫耐受性,目标是基于根系的调节离子稳态的基因,从而赋予大麦(以及潜在的其他物种)盐胁迫耐受性。