John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.
Elife. 2019 Feb 18;8:e40472. doi: 10.7554/eLife.40472.
MreB is an actin homolog that is essential for coordinating the cell wall synthesis required for the rod shape of many bacteria. Previously we have shown that filaments of MreB bind to the curved membranes of bacteria and translocate in directions determined by principal membrane curvatures to create and reinforce the rod shape (Hussain et al., 2018). Here, in order to understand how MreB filament dynamics affects their cellular distribution, we model how MreB filaments bind and translocate on membranes with different geometries. We find that it is both energetically favorable and robust for filaments to bind and orient along directions of largest membrane curvature. Furthermore, significant localization to different membrane regions results from processive MreB motion in various geometries. These results demonstrate that the in vivo localization of MreB observed in many different experiments, including those examining negative Gaussian curvature, can arise from translocation dynamics alone.
MreB 是肌动蛋白同源物,对于协调许多细菌的杆状形状所需的细胞壁合成是必不可少的。以前我们已经表明,MreB 细丝与细菌的弯曲膜结合,并沿着由主要膜曲率决定的方向易位,从而形成并加强杆状形状(Hussain 等人,2018 年)。在这里,为了了解 MreB 细丝动力学如何影响它们的细胞分布,我们模拟了 MreB 细丝在具有不同几何形状的膜上的结合和易位方式。我们发现,细丝结合并沿着最大膜曲率的方向排列在能量上是有利的且稳健的。此外,由于在各种几何形状中进行了连续的 MreB 运动,因此会导致细丝在不同的膜区域中显著定位。这些结果表明,在许多不同的实验中观察到的 MreB 的体内定位,包括那些检查负高斯曲率的实验,可以仅通过易位动力学产生。