Suppr超能文献

基于脑脊液和 MRI 特征的简单且新颖的截断点识别,可预测阿尔茨海默病的进展,强化了 2018 年 NIA-AA 研究框架。

Identification of a Simple and Novel Cut-Point Based Cerebrospinal Fluid and MRI Signature for Predicting Alzheimer's Disease Progression that Reinforces the 2018 NIA-AA Research Framework.

机构信息

Souderton Area High School, Souderton, PA, USA.

Charles River Laboratories, Horsham, PA, USA.

出版信息

J Alzheimers Dis. 2019;68(2):537-550. doi: 10.3233/JAD-180905.

Abstract

The 2018 NIA-AA research framework proposes a classification system with Amyloid-β deposition, pathologic Tau, and Neurodegeneration (ATN) for diagnosis and staging of Alzheimer's disease (AD). Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database can be utilized to identify diagnostic signatures for predicting AD progression, and to determine the utility of this NIA-AA research framework. Profiles of 320 peptides from baseline cerebrospinal fluid (CSF) samples of 287 normal, mild cognitive impairment (MCI), and AD subjects followed over a 3-10-year period were measured via multiple reaction monitoring mass spectrometry. CSF Aβ42, total-Tau (tTau), phosphorylated-Tau (pTau-181), and hippocampal volume were also measured. From these candidate markers, optimal signatures with decision thresholds to separate AD and normal subjects were first identified via unbiased regression and tree-based algorithms. The best performing signature determined via cross-validation was then tested in an independent group of MCI subjects to predict future progression. This multivariate analysis yielded a simple diagnostic signature comprising CSF pTau-181 to Aβ42 ratio, MRI hippocampal volume, and low CSF levels of a novel PTPRN peptide, with a decision threshold on each marker. When applied to a separate MCI group at baseline, subjects meeting these signature criteria experience 4.3-fold faster progression to AD compared to a 2.2-fold faster progression using only conventional markers. This novel 4-marker signature represents an advance over the current diagnostics based on widely used markers, and is easier to use in practice than recently published complex signatures. This signature also reinforces the ATN construct from the 2018 NIA-AA research framework.

摘要

2018 年 NIA-AA 研究框架提出了一种分类系统,该系统将淀粉样蛋白-β 沉积、病理 Tau 和神经退行性变(ATN)用于阿尔茨海默病(AD)的诊断和分期。可以利用来自阿尔茨海默病神经影像学倡议(ADNI)数据库的数据来确定预测 AD 进展的诊断特征,并确定该 NIA-AA 研究框架的实用性。通过多反应监测质谱法测量了 287 名正常、轻度认知障碍(MCI)和 AD 受试者在基线时的 320 种肽的特征,这些受试者的脑脊液(CSF)样本随时间变化,持续 3-10 年。还测量了 CSF Aβ42、总 Tau(tTau)、磷酸化 Tau(pTau-181)和海马体积。从这些候选标志物中,首先通过无偏回归和基于树的算法确定具有区分 AD 和正常受试者的决策阈值的最佳特征。然后通过交叉验证确定的最佳特征在一组独立的 MCI 受试者中进行测试,以预测未来的进展。这种多变量分析产生了一个简单的诊断特征,该特征由 CSF pTau-181 与 Aβ42 的比值、MRI 海马体积和新型 PTPRN 肽的低 CSF 水平组成,每个标志物都有一个决策阈值。当应用于基线时的另一个 MCI 组时,符合该特征标准的受试者进展为 AD 的速度比仅使用传统标志物快 4.3 倍,比使用传统标志物快 2.2 倍。这种新的 4 标志物特征比基于广泛使用标志物的当前诊断方法有所进步,并且比最近发表的复杂特征更容易在实践中使用。该特征还加强了 2018 年 NIA-AA 研究框架中的 ATN 结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验