Nguyen Hung, Jang Sooyong, Ivanov Radoslav, Bonafide Christopher P, Weimer James, Lee Insup
Department of Computer and Information Science, University of Pennsylvania.
Children's Hospital of Philadelphia.
Smart Health (Amst). 2018 Dec;9-10:287-296. doi: 10.1016/j.smhl.2018.07.002. Epub 2018 Jul 7.
Alarm fatigue has been increasingly recognized as one of the most significant problems in the hospital environment. One of the major causes is the excessive number of false physiologic monitor alarms. An underlying problem is the inefficient traditional threshold alarm system for physiologic parameters such as low blood oxygen saturation (SpO). In this paper, we propose a robust classification procedure based on the AdaBoost algorithm with reject option that can identify and silence false SpO alarms, while ensuring zero misclassified clinically significant alarms. Alarms and vital signs related to SpO such as heart rate and pulse rate, within monitoring interval are extracted into different numerical features for the classifier. We propose a variant of AdaBoost with reject option by allowing a third decision (i.e., reject) expressing doubt. Weighted outputs of each weak classifier are input to a softmax function optimizing to satisfy a desired false negative rate upper bound while minimizing false positive rate and indecision rate. We evaluate the proposed classifier using a dataset collected from 100 hospitalized children at Children's Hospital of Philadelphia and show that the classifier can silence 23.12% of false SpO alarms without missing any clinically significant alarms.
警报疲劳已日益被视为医院环境中最重大的问题之一。主要原因之一是生理监测警报数量过多。一个潜在问题是针对诸如低血氧饱和度(SpO)等生理参数的传统阈值警报系统效率低下。在本文中,我们提出了一种基于具有拒绝选项的AdaBoost算法的稳健分类程序,该程序可以识别并消除错误的SpO警报,同时确保临床显著警报的误分类为零。在监测间隔内,与SpO相关的警报和生命体征(如心率和脉率)被提取为不同的数值特征以供分类器使用。我们通过允许第三个决策(即拒绝)来表达疑问,提出了一种具有拒绝选项的AdaBoost变体。每个弱分类器的加权输出被输入到一个softmax函数中进行优化,以满足期望的假阴性率上限,同时最小化假阳性率和不确定率。我们使用从费城儿童医院100名住院儿童收集的数据集评估了所提出的分类器,并表明该分类器可以消除23.12%的错误SpO警报,而不会错过任何临床显著警报。