Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.
Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussels, Brussels, Belgium.
PLoS Comput Biol. 2023 Sep 14;19(9):e1011488. doi: 10.1371/journal.pcbi.1011488. eCollection 2023 Sep.
The development of high-throughput next-generation sequencing technologies and large-scale genetic association studies produced numerous advances in the biostatistics field. Various aggregation tests, i.e. statistical methods that analyze associations of a trait with multiple markers within a genomic region, have produced a variety of novel discoveries. Notwithstanding their usefulness, there is no single test that fits all needs, each suffering from specific drawbacks. Selecting the right aggregation test, while considering an unknown underlying genetic model of the disease, remains an important challenge. Here we propose a new ensemble method, called Excalibur, based on an optimal combination of 36 aggregation tests created after an in-depth study of the limitations of each test and their impact on the quality of result. Our findings demonstrate the ability of our method to control type I error and illustrate that it offers the best average power across all scenarios. The proposed method allows for novel advances in Whole Exome/Genome sequencing association studies, able to handle a wide range of association models, providing researchers with an optimal aggregation analysis for the genetic regions of interest.
高通量下一代测序技术和大规模遗传关联研究的发展在生物统计学领域取得了诸多进展。各种聚合检验方法,即分析性状与基因组区域内多个标记之间关联的统计方法,产生了各种新的发现。尽管它们很有用,但没有一种测试方法适合所有需求,每种方法都有其特定的缺点。在考虑疾病未知的潜在遗传模型的情况下,选择正确的聚合检验方法仍然是一个重要的挑战。在这里,我们提出了一种新的集成方法,称为 Excalibur,它基于对每种测试的局限性及其对结果质量的影响进行深入研究后创建的 36 种聚合测试的最佳组合。我们的研究结果表明,我们的方法能够控制第一类错误,并说明它在所有情况下都提供了最佳的平均功效。所提出的方法允许在全外显子/基因组测序关联研究中取得新的进展,能够处理广泛的关联模型,为研究人员提供感兴趣的遗传区域的最佳聚合分析。