Suppr超能文献

具有慢启动子动力学的基因调控网络中的多模态。

Multi-modality in gene regulatory networks with slow promoter kinetics.

机构信息

Departments of Electrical and Computer Engineering and of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2019 Feb 19;15(2):e1006784. doi: 10.1371/journal.pcbi.1006784. eCollection 2019 Feb.

Abstract

Phenotypical variability in the absence of genetic variation often reflects complex energetic landscapes associated with underlying gene regulatory networks (GRNs). In this view, different phenotypes are associated with alternative states of complex nonlinear systems: stable attractors in deterministic models or modes of stationary distributions in stochastic descriptions. We provide theoretical and practical characterizations of these landscapes, specifically focusing on stochastic Slow Promoter Kinetics (SPK), a time scale relevant when transcription factor binding and unbinding are affected by epigenetic processes like DNA methylation and chromatin remodeling. In this case, largely unexplored except for numerical simulations, adiabatic approximations of promoter kinetics are not appropriate. In contrast to the existing literature, we provide rigorous analytic characterizations of multiple modes. A general formal approach gives insight into the influence of parameters and the prediction of how changes in GRN wiring, for example through mutations or artificial interventions, impact the possible number, location, and likelihood of alternative states. We adapt tools from the mathematical field of singular perturbation theory to represent stationary distributions of Chemical Master Equations for GRNs as mixtures of Poisson distributions and obtain explicit formulas for the locations and probabilities of metastable states as a function of the parameters describing the system. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations, a synthetic oscillator, and a trans-differentiation network.

摘要

在缺乏遗传变异的情况下,表型的可变性通常反映了与潜在基因调控网络(GRN)相关的复杂能量景观。从这个角度来看,不同的表型与复杂非线性系统的替代状态有关:确定性模型中的稳定吸引子或随机描述中的稳定分布模式。我们提供了这些景观的理论和实际特征,特别是专注于随机慢启动动力学(SPK),当转录因子结合和解离受到表观遗传过程(如 DNA 甲基化和染色质重塑)的影响时,这一时间尺度是相关的。在这种情况下,除了数值模拟外,很大程度上尚未得到探索,启动子动力学的绝热近似并不合适。与现有文献相比,我们提供了多种模式的严格分析特征。一般形式方法深入了解参数的影响,并预测 GRN 布线的变化(例如通过突变或人工干预)如何影响替代状态的可能数量、位置和可能性。我们从数学领域的奇异摄动理论中采用工具来表示 GRN 的化学主方程的稳定分布作为泊松分布的混合物,并获得作为描述系统的参数的函数的亚稳态位置和概率的显式公式。作为说明,该理论用于比较随机模型和确定性模型中合作结合的作用,并给出了各种模型系统的应用,例如孤立或通信群体中的拨动开关、合成振荡器和转分化网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ca/6396950/1e498089c46c/pcbi.1006784.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验