Suppr超能文献

智利葡萄上灰霉病菌对二甲菌核利抗性菌株的首次报道

First Report of Fenhexamid Resistant Isolates of Botrytis cinerea on Grapevine in Chile.

作者信息

Esterio M, Auger J, Ramos C, García H

机构信息

Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Casilla 1004, Santiago, Chile.

出版信息

Plant Dis. 2007 Jun;91(6):768. doi: 10.1094/PDIS-91-6-0768C.

Abstract

Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) is a haploid, filamentous ascomycete that causes gray mold on many economically important crops in temperate regions, especially grapevine. The management of gray mold on table grape in Chile involves cultural and chemical methods. Currently, protection programs are based on several fungicide families (dicarboximides, anilinopyrimidines, mixture of anilinopyrimidines and phenylpyrroles, and hydroxyanilides [fenhexamid]). During the last 25 years, B. cinerea developed resistance to virtually all specific fungicides used to control gray mold. Field resistance to benzimidazoles, phenylcarbamates, and dicarboximides was detected soon after their introduction. Recent studies using PCR-duplex and specific primers for the detection of transposable elements on Chilean B. cinerea isolates recovered from different table grape cultivars corroborated the presence of two sibling cryptic populations, transposa and vacuma (3). Some vacuma isolates have shown natural resistance to fenhexamide (HydR1) and it has been separated into two groups on a molecular basis using a marker gene (Bc-hch): Group I, fenhexamid-resistant vacuma isolates; Group II, vacuma and transposa isolates sensitive to this fungicide (HydS) (2). Group I and II isolates can not interbred (1,2). Other B. cinerea resistant phenotypes, HydR2 and HydR3, have been reported as belonging to Group II (1,4). Single-spore isolates of B. cinerea (472) were collected from different table grape cultivars from 13 locations in the Chilean Central Valley. The isolation was done during harvest time from rotting berries. Fenhexamid (Teldor; Bayer CropScience, Monheim, Germany) was diluted to 10 μg a.i./ml and added to the solid medium (10 g of glucose, 1.5 g of KHPO, 2 g of KHPO, 1 g of (NH)SO, 0.5 g of MgSO·HO, 2 g of yeast extract, and 12.5 g of agar in 1 liter) to reach concentrations of 0, 0.025, 0.05, and 0.1 μg a.i./ml. A 5-mm mycelial plug from each isolate of B. cinerea was cut from the edge of 4-day-old colonies placed in the center of petri dishes with the described fungicide-amended medium and incubated at 20°C for 5 days. Two measurements, octogonal diameters, were taken from each of three replicates per treatment. Means were calculated and the diameter of the inoculated plug was subtracted from each mean. For each isolate, a linear regression of the percent inhibition of mycelial growth versus the Log transformation for each of the four concentrations of fenhexamid was obtained. The 50% effective concentration of fenhexamid (EC) was calculated with the regression equation for each isolate. So, 95.3% of B. cinerea isolates were sensitive (EC under 0.083 μg/ml), 1.9% were less sensitive (EC between 0.084 and 0.1 μg/ml), and 2.8% (13 isolates) were resistant EC values ranging from 0.1 to 8.4 μg/ml. Through PCR-restriction fragment length polymorphism, according to the Bc-hch gene restriction pattern, all resistant isolates analyzed belong to Group II of B. cinerea (Bc-hch2) (2). To our knowledge, this is the first report of fenhexamid resistant isolates of B. cinerea on grapevine in Chile and South America. It would be necessary to study the population dynamics of these isolates, although failure of botrytis control in the field with this compound has not been reported. References: (1) C. Albertini et al. Mycol. Res. 106:1171, 2002. (2) E. Fournier et al. Mycologia 97:1251, 2005. (3) T. Giraud et al. Mol. Biol. Evol. 14:1177, 1997. (4) P. Leroux et al. Phytoma 599:31, 2006.

摘要

灰葡萄孢菌(Botrytis cinerea Pers.,有性型为富氏葡萄孢盘菌(Botryotinia fuckeliana (de Bary) Whetzel))是一种单倍体丝状子囊菌,在温带地区会导致许多具有重要经济价值的作物发生灰霉病,尤其是葡萄。智利鲜食葡萄灰霉病的防治涉及栽培方法和化学方法。目前,防治方案基于多个杀菌剂类别(二甲酰亚胺类、苯胺嘧啶类、苯胺嘧啶类与苯基吡咯类的混合物以及羟基苯胺类[环酰菌胺])。在过去25年中,灰葡萄孢菌对几乎所有用于防治灰霉病的特效杀菌剂都产生了抗性。苯并咪唑类、苯基氨基甲酸酯类和二甲酰亚胺类杀菌剂在引入后不久就被检测到田间抗性。最近使用PCR - 双链体和特异性引物检测从不同鲜食葡萄品种中分离得到的智利灰葡萄孢菌分离株上转座元件的研究证实,存在两个姊妹隐性种群,即转座型(transposa)和真空型(vacuma)(3)。一些真空型分离株对环酰菌胺表现出天然抗性(HydR1),并且已使用标记基因(Bc - hch)在分子水平上分为两组:第一组,对环酰菌胺具有抗性的真空型分离株;第二组,对该杀菌剂敏感的真空型和转座型分离株(HydS)(2)。第一组和第二组分离株不能杂交(1,2)。其他灰葡萄孢菌抗性表型,HydR2和HydR3,已被报道属于第二组(1,4)。从智利中央山谷13个地点的不同鲜食葡萄品种中采集了灰葡萄孢菌(472个)的单孢分离株。分离工作在收获期从腐烂的浆果上进行。将环酰菌胺(Teldor;德国拜耳作物科学公司,蒙海姆)稀释至10 μg a.i./ml,并添加到固体培养基(1升中含有10 g葡萄糖、1.5 g KH₂PO₄、2 g K₂HPO₄、1 g (NH₄)₂SO₄、0.5 g MgSO₄·7H₂O、2 g酵母提取物和12.5 g琼脂)中,使其浓度达到0、0.025、0.05和0.1 μg a.i./ml。从4日龄菌落边缘切下每个灰葡萄孢菌分离株的一个5毫米菌丝块,置于含有上述添加杀菌剂的培养基的培养皿中央,并在20°C下培养5天。对每个处理的三个重复中的每一个进行两次测量,即八角形直径。计算平均值,并从每个平均值中减去接种块的直径。对于每个分离株,获得了环酰菌胺四个浓度下菌丝生长抑制百分比与对数转换的线性回归。用每个分离株的回归方程计算环酰菌胺的50%有效浓度(EC₅₀)。因此,95.3%的灰葡萄孢菌分离株敏感(EC₅₀低于0.083 μg/ml),1.9%较不敏感(EC₅₀在0.084至0.1 μg/ml之间),2.8%(13个分离株)抗性较强(EC₅₀值在0.1至8.4 μg/ml之间)。通过PCR - 限制性片段长度多态性分析,根据Bc - hch基因的限制性图谱,所有分析的抗性分离株均属于灰葡萄孢菌第二组(Bc - hch2)(2)。据我们所知,这是智利和南美葡萄上灰葡萄孢菌对环酰菌胺产生抗性分离株的首次报道。尽管尚未报道该化合物在田间防治灰霉病失败的情况,但仍有必要研究这些分离株的种群动态。参考文献:(1)C. Albertini等人,《真菌学研究》106:1171,2002年。(2)E. Fournier等人,《真菌学》(Mycologia)97:1251,2005年。(3)T. Giraud等人,《分子生物学与进化》14:1177,1997年。(4)P. Leroux等人,《植物病害》599:31,2006年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验