Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France;
Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5588-5596. doi: 10.1073/pnas.1815828116. Epub 2019 Feb 19.
The thermal limit of ectotherms provides an estimate of vulnerability to climate change. It differs between contrasting microhabitats, consistent with thermal ecology predictions that a species' temperature sensitivity matches the microclimate it experiences. However, observed thermal limits may differ between ectotherms from the same environment, challenging this theory. We resolved this apparent paradox by showing that ectotherm activity generates microclimatic deviations large enough to account for differences in thermal limits between species from the same microhabitat. We studied upper lethal temperature, effect of feeding mode on plant gas exchange, and temperature of attacked leaves in a community of six arthropod species feeding on apple leaves. Thermal limits differed by up to 8 °C among the species. Species that caused an increase in leaf transpiration (+182%), thus cooling the leaf, had a lower thermal limit than those that decreased leaf transpiration (-75%), causing the leaf to warm up. Therefore, cryptic microclimatic variations at the scale of a single leaf determine the thermal limit in this community of herbivores. We investigated the consequences of these changes in plant transpiration induced by plant-insect feedbacks for species vulnerability to thermal extremes. Warming tolerance was similar between species, at ±2 °C, providing little margin for resisting increasingly frequent and intense heat waves. The thermal safety margin (the difference between thermal limit and temperature) was greatly overestimated when air temperature or intact leaf temperature was erroneously used. We conclude that feedback processes define the vulnerability of species in the phyllosphere, and beyond, to thermal extremes.
变温动物的热极限为气候变化脆弱性提供了一种估计。它在对比鲜明的微生境之间存在差异,这与热生态学预测一致,即一个物种的温度敏感性与其所处的微气候相匹配。然而,来自同一环境的变温动物的观察到的热极限可能存在差异,这对该理论提出了挑战。我们通过表明变温动物的活动会产生足够大的微气候偏差,从而解释了同一微生境中的物种之间热极限存在差异,解决了这一明显的悖论。我们研究了六种以苹果叶为食的节肢动物物种群落中的上限致死温度、摄食模式对植物气体交换的影响以及受攻击叶片的温度。这些物种的热极限差异高达 8°C。那些导致叶片蒸腾增加(增加 182%)从而使叶片降温的物种,其热极限低于那些使叶片蒸腾减少(减少 75%)从而使叶片升温的物种。因此,单个叶片尺度上的隐性微气候变化决定了该食草动物群落中的热极限。我们研究了由植物-昆虫反馈引起的植物蒸腾变化对物种对热极端的脆弱性的影响。物种的升温耐受性相似,在±2°C,为抵抗越来越频繁和强烈的热浪提供的余地很小。当错误地使用空气温度或完整叶片温度时,热安全裕度(热极限与温度之间的差异)被大大高估。我们的结论是,反馈过程定义了叶片层以及更远的范围内物种对热极端的脆弱性。
Proc Natl Acad Sci U S A. 2019-2-19
Glob Chang Biol. 2016-10-14
Nat Commun. 2021-2-19
Comp Biochem Physiol A Mol Integr Physiol. 2016-2
Philos Trans R Soc Lond B Biol Sci. 2025-1-9
Oecologia. 2024-12-10
Curr Res Insect Sci. 2024-7-24
J Exp Biol. 2018-4-20
Proc Natl Acad Sci U S A. 2018-1-8
Plant Cell Environ. 2017-8-17
Philos Trans R Soc Lond B Biol Sci. 2017-6-19
J Insect Physiol. 2017-5