a MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre School of Life Sciences , University of Dundee , Dundee , UK.
b Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine , University of Helsinki , Finland.
Autophagy. 2019 Jul;15(7):1296-1308. doi: 10.1080/15548627.2019.1580509. Epub 2019 Feb 20.
Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the -QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy and the specificity of the reporters used. ATG: autophagy related; GFP: green fluorescent protein; LC3: microtubule associated protein 1 light chain 3; ONH: optic nerve head; ONL: outer nuclear layer; RPE: retinal pigment epithelium.
光感受对于我们对自然世界的体验和感知至关重要;因此,眼睛对于大多数脊椎动物动物来说是感知光线的首要器官。线粒体稳态是视觉健康的核心,选择性自噬性线粒体降解(自噬)预计在这里发挥关键作用。尽管有研究将异常的自噬与眼部功能障碍联系起来,但对于视觉系统中基础自噬的普遍性或其与一般自噬的关系知之甚少。在这项研究中,我们利用 -QC 小鼠和一种密切相关的通用巨自噬报告模型来描述成年和发育中眼睛的基础自噬和巨自噬。我们报告说,眼部巨自噬很普遍,但令人惊讶的是,自噬并不总是遵循相同的发生模式。我们观察到晶状体和睫状体中的自噬水平较低,与这些区域中高水平的通用 MAP1LC3 依赖性巨自噬形成鲜明对比。我们在成年视网膜中发现了这个过程的惊人逆转,在那里自噬占发生的巨自噬的更大程度,特别是在外核层的光感受器神经元中。我们还展示了各种眼部组织中自噬的发育调控。特别是,成年小鼠视网膜中的自噬在其定位上在发育后期发生逆转。我们的工作因此定义了哺乳动物眼睛中线粒体稳态的景观,并在此过程中强调了自噬的选择性和所使用报告者的特异性。ATG:自噬相关;GFP:绿色荧光蛋白;LC3:微管相关蛋白 1 轻链 3;ONH:视神经头;ONL:外核层;RPE:视网膜色素上皮。