From the Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School.
Circ Res. 2019 Apr 26;124(9):1360-1371. doi: 10.1161/CIRCRESAHA.118.314607.
RATIONALE: Diabetic patients develop cardiomyopathy characterized by hypertrophy, diastolic dysfunction, and intracellular lipid accumulation, termed lipotoxicity. Diabetic hearts utilize fatty acids as a major energy source, which produces high levels of oxidative stress, thereby inducing mitochondrial dysfunction. OBJECTIVE: To elucidate how mitochondrial function is regulated in diabetic cardiomyopathy. METHODS AND RESULTS: Mice were fed either a normal diet or high-fat diet (HFD, 60 kcal % fat). Although autophagic flux was activated by HFD consumption, peaking at 6 weeks ( P<0.05), it was attenuated thereafter. Mitophagy, evaluated with Mito-Keima, was increased after 3 weeks of HFD feeding (mitophagy area: 8.3% per cell with normal diet and 12.4% with HFD) and continued to increase even after 2 months ( P<0.05). By isolating adult cardiomyocytes from GFP-LC3 mice fed HFD, we confirmed that mitochondria were sequestrated by LC3-positive autophagosomes during mitophagy. In wild-type mice, cardiac hypertrophy, diastolic dysfunction (end diastolic pressure-volume relationship =0.051±0.009 in normal diet and 0.11±0.004 in HFD) and lipid accumulation occurred within 2 months of HFD feeding ( P<0.05). Deletion of atg7 impaired mitophagy, increased lipid accumulation, exacerbated diastolic dysfunction (end diastolic pressure-volume relationship =0.11±0.004 in wild type and 0.152±0.019 in atg7 cKO; P<0.05) and induced systolic dysfunction (end systolic pressure-volume relationship =24.86±2.46 in wild type and 15.93±1.76 in atg7 cKO; P<0.05) during HFD feeding. Deletion of Parkin partially inhibited mitophagy, increased lipid accumulation and exacerbated diastolic dysfunction (end diastolic pressure-volume relationship =0.124±0.005 in wild type and 0.176±0.018 in Parkin KO, P<0.05) in response to HFD feeding. Injection of TB1 (Tat-Beclin1) activated mitophagy, attenuated mitochondrial dysfunction, decreased lipid accumulation, and protected against cardiac diastolic dysfunction (end diastolic pressure-volume relationship =0.110±0.009 in Control peptide and 0.078±0.015 in TB1, P<0.05) during HFD feeding. CONCLUSIONS: Mitophagy serves as an essential quality control mechanism for mitochondria in the heart during HFD consumption. Impairment of mitophagy induces mitochondrial dysfunction and lipid accumulation, thereby exacerbating diabetic cardiomyopathy. Conversely, activation of mitophagy protects against HFD-induced diabetic cardiomyopathy.
背景:糖尿病患者会发生以心肌肥厚、舒张功能障碍和细胞内脂质积累为特征的心肌病,称为脂毒性。糖尿病心脏主要利用脂肪酸作为能量来源,这会产生高水平的氧化应激,从而导致线粒体功能障碍。 目的:阐明糖尿病心肌病中线粒体功能是如何调节的。 方法和结果:将小鼠喂食正常饮食或高脂肪饮食(HFD,60%脂肪热量)。尽管 HFD 摄入激活了自噬通量,在 6 周时达到峰值(P<0.05),但此后自噬通量被减弱。用 Mito-Keima 评估的线粒体自噬在 HFD 喂养 3 周后增加(正常饮食时线粒体自噬面积为 8.3%/细胞,HFD 时为 12.4%),即使在 2 个月后仍继续增加(P<0.05)。通过从喂食 HFD 的 GFP-LC3 小鼠中分离出成年心肌细胞,我们证实了在线粒体自噬过程中,LC3 阳性自噬体将线粒体隔离。在野生型小鼠中,HFD 喂养 2 个月内出现心脏肥厚、舒张功能障碍(舒张末期压力-容积关系=正常饮食时 0.051±0.009,HFD 时 0.11±0.004)和脂质积累(P<0.05)。Atg7 缺失会损害线粒体自噬,增加脂质积累,加剧舒张功能障碍(舒张末期压力-容积关系=野生型时 0.11±0.004,Atg7 cKO 时 0.152±0.019;P<0.05),并诱导收缩功能障碍(收缩末期压力-容积关系=野生型时 24.86±2.46,Atg7 cKO 时 15.93±1.76;P<0.05)在 HFD 喂养期间。Parkin 的缺失部分抑制了线粒体自噬,增加了脂质积累,并加剧了舒张功能障碍(正常饮食时 0.124±0.005,Parkin KO 时 0.176±0.018,P<0.05)对 HFD 喂养的反应。TB1(Tat-Beclin1)的注射激活了线粒体自噬,减轻了线粒体功能障碍,减少了脂质积累,并防止了心脏舒张功能障碍(正常饮食时 0.110±0.009,TB1 时 0.078±0.015,P<0.05)在 HFD 喂养期间。 结论:线粒体自噬是 HFD 摄入期间心脏中线粒体的重要质量控制机制。线粒体自噬的损害会导致线粒体功能障碍和脂质积累,从而加剧糖尿病心肌病。相反,激活线粒体自噬可预防 HFD 诱导的糖尿病心肌病。
Am J Physiol Heart Circ Physiol. 2021-11-1
Cell Physiol Biochem. 2018
Biochim Biophys Acta Mol Basis Dis. 2024-6
Curr Issues Mol Biol. 2025-8-4
Curr Issues Mol Biol. 2025-4-23
J Biol Chem. 2025-7-16
Cell Mol Life Sci. 2025-6-25
World J Diabetes. 2025-6-15
Front Endocrinol (Lausanne). 2025-6-5
Signal Transduct Target Ther. 2025-6-11
Annu Rev Physiol. 2017-10-25
N Engl J Med. 2017-7-6
Circ Res. 2017-4-14
Trends Endocrinol Metab. 2016-10
Curr Opin Genet Dev. 2016-6