Bielczyk Natalia Z, Uithol Sebo, van Mourik Tim, Anderson Paul, Glennon Jeffrey C, Buitelaar Jan K
Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands.
Netw Neurosci. 2019 Feb 1;3(2):237-273. doi: 10.1162/netn_a_00062. eCollection 2019.
In the past two decades, functional Magnetic Resonance Imaging (fMRI) has been used to relate neuronal network activity to cognitive processing and behavior. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this paper, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, Linear Non-Gaussian Acyclic Models, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area.
在过去二十年中,功能磁共振成像(fMRI)已被用于将神经网络活动与认知加工及行为联系起来。最近,这种方法得到了算法的增强,这些算法使我们能够推断神经网络组成群体之间的因果联系。已经提出了多种推理程序来解决这个研究问题,但到目前为止,每种方法在建立全脑连接模式方面都有局限性。在本文中,我们讨论了功能磁共振成像研究中推断因果关系的八种方法:贝叶斯网络、动态因果建模、格兰杰因果关系、似然比、线性非高斯无环模型、帕特尔 Tau、结构方程建模和转移熵。最后,我们针对该领域的未来方向提出了一些建议。